A CHARACTERIZATION OF STRONG MEASURE ZERO SETS

BY

JANUSZ PAWLIKOWSKI*

Department of Mathematics, University of Wroctaw pl. Grunwaldzki 2/4, 50-384 Wroc~aw, Poland e-mail: pawlikow@math.uni.wroc.pl

ABSTRACT

We show that a set $X \subseteq \mathbf{R}$ has strong measure zero iff for every closed measure zero set $F \subseteq \mathbf{R}$, $F + X$ has measure zero.

A set $X \subseteq \mathbf{R}$ is strongly null (has strong measure zero) iff for every sequence of positive real numbers $\langle \epsilon_n : n \in \omega \rangle$ there exists a sequence $\langle X_n : n \in \omega \rangle$ of subsets of **R** such that $X \subseteq \bigcup_n X_n$ and the diameter of $X_n < \epsilon_n$ (see [Bo], [Mi]). Galvin, Mycielski and Solovay [GMS] characterized strongly null sets in the following way (see [G] or [Mi] for a proof):

THEOREM (Galvin, Mycielski and Solovay): Let $X \subseteq \mathbb{R}$. The following condi*tions* are *equivalent:*

- (a) *X is strongly null;*
- (b) every dense G_{δ} set contains a translate of X;
- (c) every *open dense set contains a translate of X.*

The Galvin-Mycielski-Solovay theorem can be rephrased as follows. A set $X \subseteq$ **R** is strongly null iff $D + X \neq \mathbf{R}$ for every meager (equivalently, nowheredense) set D. Indeed, just note that for $t \in \mathbf{R}$, $t \notin D + X$ iff $(-t) + X \subseteq \mathbf{R} \setminus (-D)$.

We shall prove the following theorem.

^{*} Supported by KBN grant PB 2 1017 91 01. Received January 10, 1994

THEOREM: A set $X \subseteq \mathbf{R}$ is strongly null iff $F + X$ is null for every closed null *set* $F \subseteq \mathbf{R}$.

Strongly null sets can be defined for any metric space. For technical reasons we choose to work with the Cantor set 2 rather than R. It is not hard to transfer our arguments to R and R/Z (and then, in fact, to any abelian locally compact finite dimensional Polish group).

Notation: ω is the set of nonnegative integers. For $n \in \omega$, $n = \{0, 1, \ldots, n-1\}$. For $A \subseteq \omega$ (finite or infinite), we endow ^A2 with the product structure arising from considering $2 = \{0, 1\}$ as the group of addition mod 2 with the discrete metric and measure μ such that $\mu({0}) = \mu({1}) = 1/2$. We denote the product measure in ^A2 by μ_A and usually drop the subscript. We say that sets $T_i \subseteq {}^{A_2}$ $(i \in I)$ are measure independent if $\mu(\bigcap_{i \in J} T_i) = \prod_{i \in J} \mu(T_i)$ for every finite $J \subseteq I$. Note that if T_i 's are independent, then so are $({}^A 2 \times T_i)$'s

For $\tau \in {}^A 2$, let $[\tau] = \{t \in {}^{\omega}2: \tau \subseteq t\}$. For $T \subset {}^A 2$, let $[T] = \bigcup_{\tau \in T} [\tau]$. Given sets S_n $(n \in \omega)$, we write $\bigvee_n S_n$ for the upper limit $\bigcap_m \bigcup_{n>m} S_n$ and $\bigwedge_n S_n$ for the lower limit $\bigcup_m \bigcap_{n>m} S_n$. We also write $\exists^{\infty} n$ for $\forall m \exists n \geq m$ and $\forall^{\infty} n$ for $\exists m \forall n \geq m$. Thus, $t \in \bigvee_n [\tau_n]$ iff $\exists^{\infty} n \tau_n \subseteq t$ and $t \in \bigwedge_n [\tau_n]$ iff $\forall^{\infty} n \tau_n \subseteq t$.

If $B \subseteq A \subseteq \omega$, we identify ^A2 with ^B2 x ^A \sim ^B2. For $\tau \in {}^{B_2}$ and $G \subseteq {}^{A_2}$, let $G_{\tau} = \{ \sigma \in {}^{A \setminus B}2: \tau \cup \sigma \in G \}$ (we view G_{τ} as the section of $G \subseteq {}^{B}2 \times {}^{A \setminus B}2$ determined by τ).

Let $\zeta \omega_2 = |\int_{\gamma}^{\gamma} n_2$.

It is not hard to see that a set $X \subseteq "2$ is strongly null iff for every sequence $\langle a_n : n \in \omega \rangle$ of integers there exist $\sigma_n \in {a_n}2$ such that $X \subseteq \bigcup_n [\sigma_n]$. We can equally well write here $X \subseteq \bigvee_n [\sigma_n]$ (split ω into infinitely many infinite sets).

The following lemma, however trivial, is the key to everything.

LEMMA 0: Let $m \ge n + 2^n k$, $k, n, m \in \omega$. There exists $T \subseteq {}^{m_2}$ such that $\mu(T) = 2^{-k}$ and for any $\langle \sigma_i, \tau_i \rangle \in {}^{n}2 \times {}^{[n,m)}2$ $(i \in I)$ with σ_i 's distinct, the sets $T + \langle \sigma_i, \tau_i \rangle$ ($i \in I$) are measure independent.

Proof: Find 2ⁿ disjoint sets $u_{\sigma} \subseteq [n,m)$ ($\sigma \in {}^{n}2$), each of size k. Let $T_{\sigma} =$ ${\tau \in [n,m]}$: $\tau | u_{\sigma} \equiv 0$. Then $\mu(T_{\sigma}) = 2^{-k}$. Also, if $\sigma_i \in {}^{n_2}$ ($i \in I$) are distinct and $\tau_i \in \{n,m\}$ ($i \in I$) are arbitrary, then $T_{\sigma_i} + \tau_i$ ($i \in I$) are measure independent.

Let
$$
T = \bigcup_{\sigma \in \mathbb{R}^2} {\sigma} \times T_{\sigma}
$$
. Then $\mu(T) = 2^{-k}$. If now $\sigma_i \in {}^{n_2}$ $(i \in I)$ are distinct,

 $\tau_i \in [n,m)$ 2 ($i \in I$) are arbitrary, and $J \subseteq I$, then

$$
\bigcap_{i \in J} T + \langle \sigma_i, \tau_i \rangle = \bigcap_{i \in J} \bigcup_{\sigma \in \tau_2} \{ \sigma + \sigma_i \} \times (T_{\sigma} + \tau_i)
$$

$$
= \bigcap_{i \in J} \bigcup_{\sigma \in \tau_2} \{ \sigma \} \times (T_{\sigma + \sigma_i} + \tau_i)
$$

$$
= \bigcup_{\sigma \in \tau_2} \{ \sigma \} \times \bigcap_{i \in J} (T_{\sigma + \sigma_i} + \tau_i).
$$

Since for every σ , $(T_{\sigma+\sigma_i}+\tau_i)$'s are measure independent (because σ_i 's are distinct), it follows that $(T + \langle \sigma_i, \tau_i \rangle)$'s are measure independent.

Now comes the basic lemma.

LEMMA 1: For every comeager set $H \subseteq {}^{\omega}2$ there is a closed null set $F \subseteq {}^{\omega}2$ such *that for every* $X \subseteq {}^{\omega}2$ *with* $F + X$ *null there is* $t \in {}^{\omega}2$ *with* $t + X \subseteq H$.

Proof: Fix a comeager set $H \subseteq \mathcal{L}2$. Choose integers

$$
a_0 = 0,
$$

\n
$$
a_n = a_n^0 < a_n^1 < \dots < a_n^{n \cdot 2^{a_n}} = b_n,
$$

\n
$$
a_{n+1} = b_n + 2^{b_n - a_n},
$$

and sequences

$$
\sigma_n^i\colon [a_n^i,a_n^{i+1})\to 2,
$$

such that

$$
\{s\in{}^{\omega}2\colon \exists^{\infty}n\,\,\exists i\,\,\sigma_n^i\subseteq s\}\subseteq H.
$$

If $H \supseteq \bigcap_n H_n$, H_n open dense, choose σ_n^i so that $[\sigma_n^i] \subseteq \bigcap_{m \leq n} H_m$.)

Find $F_n \subseteq [a_n, a_{n+1})$ with $\mu(F_n) = 1/2$ such that, whenever $\sigma_i \in [a_n, a_{n+1})$ 2 $(i \in I)$ have distinct restrictions to $[a_n, b_n)$, then $(F_n + \sigma_i)$'s are measure independent. Let $F = \bigcap_n [F_n]$. Then F is closed and null. Suppose that $F + X$ is null.

CLAIM: There exist $K_n \subseteq [a_n, b_n]$ $(n \in \omega)$ with $|K_n| \leq n \cdot 2^{a_n}$ such that

$$
\forall x \in X \; \exists^{\infty} n \; x | [a_n, b_n] \in K_n.
$$

Proof: Let $G \subseteq {}^{\omega}2$ be an open set covering ${}^{\omega}2 + F + X$ such that $\mu(G) < \prod_{n} \epsilon_n$, where $\epsilon_n = 1 - 2^{-(n+1)}$. Let

$$
K_n = \{ \sigma | [a_n, b_n) : \sigma \in [a_n, a_{n+1}) \} \& \exists \tau \in {^{a_n} 2 F_n + \sigma \subseteq L_\tau } \},
$$

where

$$
L_{\tau} = \{ \sigma \in {}^{[a_n, a_{n+1})} 2 \colon \mu(G_{\tau \cup \sigma}) > \mu(G_{\tau}) / \epsilon_n \}.
$$

We have

 $|K_n| \leq n \cdot 2^{a_n}.$

Indeed, fix $\tau \in {}^{a_n}2$. By the Fubini theorem applied to $G_{\tau} \subseteq {}^{[a_n, a_{n+1})}2 \times {}^{[a_{n+1}, \omega)}2$, $\mu(L_{\tau}) < \epsilon_n$. Let $\sigma_k \in [\alpha_n, \alpha_{n+1})_2$ $(k < k_{\tau})$ be such that $F_n + \sigma_k \subseteq L_{\tau}$ and all $\sigma_k|[a_n, b_n]$ are distinct. Then

$$
\bigcap_{k} [a_n, a_{n+1})_2 \setminus (F_n + \sigma_k) \supseteq [a_n, a_{n+1})_2 \setminus L_{\tau}.
$$

So, using independence,

$$
2^{-k_{\tau}} = (1 - 1/2)^{k_{\tau}}
$$

\n
$$
\geq 1 - \mu(L_{\tau})
$$

\n
$$
> 1 - \epsilon_n = 2^{-(n+1)},
$$

hence $k_{\tau} \leq n$. The estimation for $|K_n|$ follows.

We shall now show that $\forall x \in X \exists^{\infty} n x | [a_n, b_n) \in K_n$. Fix $x \in X$. It is enough to show

$$
\exists^{\infty} n \; \exists \tau \in \{a_n \; 2 \; F_n + x \vert [a_n, a_{n+1}) \subseteq L_{\tau}.
$$

Suppose this is not true. Then

$$
\forall^{\infty} n \,\forall \tau \in \mathbb{S}^{n} \, 2 \, F_n + x \, |[a_n, a_{n+1}) \nsubseteq L_{\tau}.
$$

So there is m such that

$$
\forall n \geq m \; \forall \tau \in {}^{a_n}2 \; \exists \sigma \in F_n + x \, | \, [a_n, a_{n+1}) \; \mu(G_{\tau \cup \sigma}) \leq \mu(G_{\tau}) / \epsilon_n.
$$

Note also that for every n and $\tau \in \binom{a_n}{n}$, by the Fubini theorem applied to $G_{\tau} \subseteq {}^{[a_n,a_{n+1})}2 \times {}^{[a_{n+1},\omega)}2,$

$$
\exists \sigma \in {}^{[a_n, a_{n+1})} 2 \ \mu(G_{\tau \cup \sigma}) \leq \mu(G_{\tau}) \leq \mu(G_{\tau})/ \epsilon_n.
$$

Now we can inductively define $t\in {}^{\omega}2$ such that

$$
\forall n \geq m, \quad t \vert [a_n, a_{n+1}) \in F_n + x \vert [a_n, a_{n+1})
$$

and

$$
\forall n \quad \epsilon_n \mu(G_{t|a_{n+1}}) \leq \mu(G_{t|a_n}).
$$

Then $t \in \langle x^2 + F + x$, so $t \in G$. Since G is open, there is n with $\mu(G_{t|a_{n+1}}) = 1$. Then

$$
\epsilon_0 \cdots \epsilon_n = \epsilon_0 \cdots \epsilon_n \mu(G_{t|a_{n+1}}) \leq \mu(G_{t|a_0}) = \mu(G),
$$

which contradicts $\mu(G) < \prod_n \epsilon_n$. \blacksquare (Claim)

We shall now show how to get t with $t + X \subseteq H$. Let $K_n = \{\tau_n^i : i < n \cdot 2^{a_n}\}.$ Let $t \in {}^{\omega}2$ be any extension of $\bigcup_{n,i} \sigma_n^i + \tau_n^i | [a_n^i, a_n^{i+1})$. By the claim, given $x \in X$, $\exists^{\infty} n \exists i \ x \supseteq \tau_n^i | [a_n^i, a_n^{i+1}).$ So,

$$
\exists^\infty n \ \exists i \ t+x \supseteq \sigma^i_n + \tau^i_n | [a^i_n,a^{i+1}_n) + \tau^i_n | [a^i_n,a^{i+1}_n) = \sigma^i_n.
$$

It follows that $t + x \in H$.

The following two lemmas are folklore.

LEMMA 2: If for every open dense set $H \subseteq {}^{\omega}2$ there exists $t \in {}^{\omega}2$ with $t+X \subseteq H$, *then X is strongly null.*

Proof: Fix an increasing sequence of integers $\langle a_n : n \in \omega \rangle$. Choose $\tau_n \in \mathbb{R}^n$ 2 so that $H = \bigcup_{n} [\tau_n]$ is dense. Let $t \in \omega_2$ be such that $X \subseteq H+t$. Then the sequence $\langle \tau_n + t | a_n : n \in \omega \rangle$ witnesses for $\langle a_n : n \in \omega \rangle$ that X is strongly null.

LEMMA 3: *Suppose that* $X \subseteq \mathcal{L}$ is strongly null and $F \subseteq \mathcal{L}$ is closed null. Then $F + X$ *is null.*

Proof: Fix an increasing sequence of integers $\langle a_n : n \in \omega \rangle$ and sets $F_n \subseteq$ $[a_n, a_{n+1}]$ of measure $\leq 2^{-n}$ so that $F \subseteq \bigcap [F_n]$. Since X is strongly null, there exist $\tau_n \in [\alpha_n, \alpha_{n+1})_2$ such that $X \subseteq \bigvee_n [\tau_n]$. Now,

$$
F + X \subseteq \bigvee_n [F_n + \tau_n].
$$

Since $\mu(F_n + \tau_n) \leq 2^{-n}$, it follows that $F + X$ is null.

Proof of Theorem: Suppose that $F+X$ is null for all closed null $F \subseteq \mathcal{L}2$. Then, by Lemma 1, X can be translated into any comeager set. So, by Lemma 2, X is strongly null. The other direction follows by Lemma 3.

Note that we have also proved the Galvin-Mycielski-Solovay theorem.

The nontrivial implication in our theorem can be rephrased as follows. If $F+X$ is null for all closed null $F \subseteq \mathbf{R}$, then $F + X \neq \mathbf{R}$ for all meager $F \subseteq \mathbf{R}$. This is a distant analogue of the following theorem of Shelah [Sh].

THEOREM (Shelah): *If* $F + X$ *is null for all null* $F \subseteq \mathbf{R}$, then $F + X$ *is meager* for all meager $F \subseteq \mathbf{R}$.

We shall now modify Lemma 1 so that it would yield Shelah's theorem. First let us record the following elementary lemma.

LEMMA 4: Let $A_n \subseteq \omega$ $(n \in \omega)$ be finite and pairwise disjoint. Let $\tau_n = A_n \times \{0\}$ and let $T_n \nsubseteq A_n$? $(n \in \omega)$ be nonempty. Then

- (a) $\bigvee_{n} [\tau_n]$ and $\bigvee_{n} [T_n]$ are comeager;
- (b) $\bigvee_{n} [T_{n}] = \bigwedge_{n} [T_{n}] + \bigvee_{n} [\tau_{n}] = \bigvee_{n} [T_{n}] + \bigwedge_{n} [\tau_{n}];$
- (c) if $Y \subseteq {}^{\omega}2$ is such that $Y + \bigvee_n [T_n] \neq {}^{\omega}2$, then $Y + \bigwedge_n [T_n]$ is meager.

Proof. (a) and (b) are clear. For (c), note that if $t \notin Y + \bigvee_n [T_n]$, then $t \notin$ $Y+\bigwedge_{n} [T_{n}]+\bigvee_{n} [\tau_{n}]$. It follows that $t+\bigvee_{n} [\tau_{n}]$ is disjoint with $Y+\bigwedge_{n} [T_{n}]$.

PROPOSITION 1: For every meager set $D \subseteq \mathcal{O}$ there exist an increasing sequence $\langle a_n : n \in \omega \rangle \in {\mathcal{C}}_{\omega}$ and sets $F_n, T_n \subseteq [{a_n, a_{n+1}}]_2$ of measure $\leq 2^{-n}$ (so $\bigvee_n [F_n],$ $\bigvee_n [T_n]$ are *null, and* $\bigwedge_n [F_n], \bigwedge_n [T_n]$ are *null* \mathbf{F}_{σ}) such that $D + \bigvee_n [T_n] \neq {}^{\omega}2$, $D + \bigwedge_{n} [T_n]$ *is meager, and*

- (4) every $X \subseteq {}^{\omega}2$ for which $\bigwedge_n [F_n] + X$ is null can be translated into $\bigvee_n [T_n]$ *(thus, if* $\bigwedge_n [F_n] + X$ *is null then* $D + X \neq \omega$ 2*)*;
- (\triangle) every $X \subseteq {}^{\omega}2$ for which $\bigvee_n [F_n] + X$ is null can be translated into $\bigwedge_n [T_n]$ *(thus, if* $\bigvee_{n} [F_n] + X$ *is null then* $D + X$ *is meager).*

Proof: Fix a meager set $D \subseteq \mathcal{L}2$. Let $c_n \in \omega$ be large enough with respect to n (e.g, $c_n = 2^{2n+1}$). Choose integers

$$
a_0 = 0,
$$

\n
$$
a_n = a_n^0 < a_n^1 < \dots < a_n^{c_n \cdot 2^{a_n}} = b_n,
$$

\n
$$
a_{n+1} = b_n + 2^{b_n - a_n} \cdot n,
$$

and sequences

$$
\sigma_n^i\colon [a_n^i,a_n^{i+1})\to 2,
$$

such that

$$
\{s\in {}^\omega 2\colon \exists^\infty n\,\, \exists i\,\, \sigma_n^i\subseteq s\}\subseteq {}^\omega 2\smallsetminus D.
$$

Vol. 93, 1996

Make sure that

$$
a_n^{i+1} - a_n^i \ge d_n,
$$

where $d_n \in \omega$ are such that

$$
2^{-d_n} \cdot c_n \cdot 2^{a_n} \leq 2^{-n}.
$$

Define now

$$
T_n = \{ \tau \in {}^{[a_n, a_{n+1})} 2 : \exists i \tau | [a_n^i, a_n^{i+1}) \equiv 0 \}.
$$

Then

$$
\mu(T_n) \leq 2^{-d_n} \cdot c_n \cdot 2^{a_n} \leq 2^{-n}.
$$

Also it is not hard to see that if $s \in \omega_2$ is such that $\bigcup_{i,n} \sigma_n^i \subseteq s$, then

$$
s+\bigvee_n[T_n]\subseteq{}^{\omega}2\setminus D.
$$

It follows that $D + \bigvee_n [T_n] \neq \omega_2$, hence, by Lemma 4, $D + \bigwedge_n [T_n]$ is meager.

Now choose sets $F_n \subseteq \binom{[a_n, a_{n+1})_2}{n \in \omega}$ so that $\mu(F_n) = 2^{-n}$ and whenever $\sigma_i \in \{a_n, a_{n+1}\}\$ ($i \in I$) have distinct restrictions to $[a_n, b_n]$ then $(F_n + \sigma_i)$'s are measure independent.

(\clubsuit) Suppose that $\bigwedge_n [F_n] + X$ is null.

CLAIM: There exist $K_n \subseteq [a_n, b_n]$ $(n \in \omega)$ with $|K_n| \leq c_n \cdot 2^{a_n}$ such that

$$
\forall x \in X \exists^{\infty} n \ x | [a_n, b_n] \in K_n.
$$

Proof: Let $G \subseteq {}^{\omega}2$ be an open set covering $\bigwedge_n [F_n] + X$ such that $\mu(G) < \prod_n \epsilon_n$ (as in Lemma 1, $\epsilon_n = 1 - 2^{-(n+1)}$). Let

$$
K_n = \{ \sigma | [a_n, b_n) : \sigma \in [a_n, a_{n+1}) \} \& \exists \tau \in {^{a_n}2 \ F_n + \sigma \subseteq L_\tau } \},
$$

where

$$
L_{\tau} = \{ \sigma \in {}^{[a_n, a_{n+1})} 2: \mu(G_{\tau \cup \sigma}) > \mu(G_{\tau}) / \epsilon_n \}.
$$

We have

$$
|K_n| \leq c_n \cdot 2^{a_n}.
$$

Indeed, fix $\tau \in {}^{a_n}2$. By the Fubini theorem applied to $G_{\tau} \subseteq {}^{[a_n, a_{n+1})}2 \times {}^{[a_{n+1}, \omega)}2$, $\mu(L_{\tau}) < \epsilon_n$. Let $\sigma_k \in [\alpha_n, \alpha_{n+1})_2$ $(k < k_{\tau})$ be such that $F_n + \sigma_k \subseteq L_{\tau}$ and all σ_k [a_n, b_n] are distinct. Then

$$
\bigcap_{k} [a_n, a_{n+1})_2 \setminus (F_n + \sigma_k) \supseteq [a_n, a_{n+1})_2 \setminus L_{\tau}.
$$

So, by independence,

$$
(1-2^{-n})^{k_{\tau}} \ge 1-\mu(L_{\tau}) > 1-\epsilon_n = 2^{-(n+1)},
$$

hence $k_{\tau} \leq c_n$. The estimation for $|K_n|$ follows.

The rest of the proof of the claim is as in Lemma 1. \Box (Claim)

Let now $K_n = \{\tau_n^i : i < c_n \cdot 2^{a_n}\}\$. By the claim, for any $t \in \omega_2$ such that

$$
\bigcup_{n,i}\tau_n^i|[a_n^i,a_n^{i+1})\subseteq t
$$

we have

$$
t+X\subseteq\bigvee_n[T_n].
$$

Indeed, if $\tau^i_n \subseteq x \in X$, then $(t + x) | [a^i_n, a^{i+1}_n) \equiv 0$. \blacksquare (...)

(\spadesuit) Suppose that $\bigvee_n [F_n] + X$ is null.

CLAIM: There exist $K_n \subseteq \binom{a_n, b_n}{2}$ ($n \in \omega$) with $|K_n| \leq c_n \cdot 2^{a_n}$ such that

$$
\forall x \in X \quad \forall^{\infty} n \quad x \mid [a_n, b_n) \in K_n.
$$

Proof: Let G be an open set covering $\bigvee_n [F_n] + X$ such that $\mu(G) < 1$ and for every $\tau \in \langle \neg z \rangle$ with $[\tau] \nsubseteq G$ we have $\mu([\tau] \setminus G) > 0$. For such τ let

$$
K_{\tau,n} = \{\sigma | [a_n, b_n): \sigma \in [a_n, a_{n+1}) \text{ as } [F_n + \sigma] \cap ([\tau] \setminus G) = \emptyset \}.
$$

We have

$$
\sum_{n} |K_{\tau,n}| \cdot 2^{-n} < \infty.
$$

Indeed, let $k_n = |K_{\tau,n}|$ and choose $\sigma_n^k \in \{a_n, a_{n+1}\}$ ($k < k_n$) so that $\sigma_n^k |[a_n, b_n\rangle$'s are distinct and give all $K_{\tau,n}$. Then

$$
\bigcap_{n,k} \omega_2 \setminus [F_n + \sigma_n^k] \supseteq [\tau] \setminus G.
$$

So, by independence,

$$
\prod_n (1-2^{-n})^{k_n} > 0.
$$

It follows that

$$
\sum_{n} k_n \cdot 2^{-n} < \infty.
$$

For each τ as above choose now $n_{\tau} \in \omega$ so that

$$
\sum_{\tau} \sum_{n \ge n_{\tau}} |K_{\tau,n}| \cdot 2^{-n} < \infty.
$$

Let

$$
K_n = \bigcup \{ K_{\tau,n} : \tau \text{ is such that } n_{\tau} \leq n \}.
$$

Then $\sum_{n} |K_n| \cdot 2^{-n} < \infty$, so

$$
\forall^{\infty} n \quad |K_n| \le 2^n \le c_n \cdot 2^{a_n}.
$$

We shall, without loss of generality, drop ∞ in this estimation.

Fix now $x \in X$. We shall show that

$$
\forall^{\infty} n \quad x \, | \, [a_n, b_n) \in K_n.
$$

We have

$$
(\bigvee_n [F_n] + x) \cap ({}^{\omega}2 \setminus G) = \emptyset.
$$

By Baire's category theorem applied to $\mathscr{L}2 \setminus G$, there is $m \in \omega$ and $\tau \in \mathscr{L}2$ with $[\tau] \cap ({}^{\omega}2 \smallsetminus G) \neq \emptyset$ such that

$$
\big(\bigcup_{n\geq m} [F_n+x\vert [a_n,a_{n+1})]\big)\cap ([\tau]\setminus G)=\emptyset.
$$

Then for $n \geq \max(n_{\tau}, m)$ we have

$$
x \vert [a_n, b_n) \in K_n. \qquad \blacksquare \text{ (Claim)}
$$

Let now $K_n = \{ \tau_n^i : i < c_n \cdot 2^{a_n} \}.$ By the claim, for any $t \in {}^{\omega}2$ such that

$$
\bigcup_{n,i}\tau_n^i|[a_n^i,a_n^{i+1})\subseteq t
$$

we have

$$
t + X \subseteq \bigwedge_n [T_n]. \qquad \blacksquare(\spadesuit)
$$

П

180 J. PAWLIKOWSKI Isr. J. Math.

Bartoszyfiski (personal communication) noted that Shelah's [Sh] proof gives a null set $G \subseteq {}^{\omega}2$ such that any $X \subseteq {}^{\omega}2$ for which $G + X$ is null can be translated into G . Since the set G was in a natural way obtained as a union of two null sets, it seemed improbable that G itself could be small, where small is taken in the sense of Bartoszyński [B]. (A set $G \subseteq \mathcal{C}2$ is small if there is a partition of ω into finite sets A_n $(n \in \omega)$ and there exist $S_n \subseteq A_{n}$ $(n \in \omega)$ such that $G \subseteq V_n[S_n]$ and $\sum_{n} \mu(S_n) < \infty$. Bartoszyński [B] showed that every null set is a union of two small sets and that there exist null sets that are not small.)

Using Proposition 1 we can find a set G which is small and has the above properties.

COROLLARY: There exists a small set $G \subseteq {}^{\omega}2$ such that any $X \subseteq {}^{\omega}2$ for which $G + X$ *is null can be translated into G.*

Proof: In the notation of Proposition 1 take $D = \emptyset$ and let $G = \bigwedge_n [F_n] \cup \bigvee_n [T_n]$ (or, $G = \bigvee_n [F_n] \cup \bigwedge_n [T_n]$). Then G is small. Indeed, let $A_n = [a_n, a_{n+1}]$ and $S_n = F_n \cup T_n~ (n \in \omega)$. Then $G \subseteq \bigvee_n [S_n]$ and $\forall n \mu(S_n) \leq 2^{-n+1}$. Now, if $G + X$ is null, then $\bigwedge_n [F_n] + X$ (resp. $\bigvee_n [F_n] + X$) is null, so, by (\clubsuit) (resp. (\spadesuit)), X can be translated into $\bigvee_n [T_n] \subseteq G$ (resp. $\bigwedge_n [T_n] \subseteq G$).

Recently Andryszczak and Recław [AR] strengthened the $(a) \Rightarrow (b)$ implication of the Galvin-Mycielski-Solovay characterization to: if $X \subseteq R$ is strongly null then for every G_{δ} set $G \subseteq \mathbb{R} \times \mathbb{R}$ all of whose vertical sections G_{s} ($s \in \mathbb{R}$) are dense, $\bigcap_{x\in X} G_x \neq \emptyset$. (This was also known to Galvin.)

The following proposition shows how the Andryszczak-Rectaw result can be obtained from the Galvin-Mycielski-Solovay characterization.

PROPOSITION 2: Let $G \subseteq {}^{\omega}2 \times {}^{\omega}2$ be a G_{δ} (resp. open) set with all vertical *sections G_s* ($s \in \omega$ 2) dense. Then there *is a dense* G_{δ} (resp. open) set $H \subseteq \omega$ 2 and a continuous function $f: {}^{\omega}2 \to {}^{\omega}2$ such that $\forall s$ $f[H + s] \subseteq G_s$. In particular, *if* $X \subseteq \mathcal{L}$ and $t \in \mathcal{L}$ are *such that* $t + X \subseteq H$, then $f(t) \in \bigcap_{x \in X} G_x$.

Proof: We do it for G_{δ} . Find increasing $\langle a_n : n \in \omega \rangle$, $\langle b_n : n \in \omega \rangle \in \omega$, $a_0 = 0$, and $\phi(\tau) \in {\a_n, a_{n+1}}2$ ($\tau \in {^{b_n}2}$) such that

$$
\bigcap_{m} \bigcup_{n>m} \bigcup_{\tau \in {^{b_n}2}} [\tau] \times [\phi(\tau)] \subseteq G.
$$

Next choose $\tau_n \in {}^{b_n}2$ $(n \in \omega)$ so that

$$
H=\bigcap_{m}\bigcup_{n>m}[\tau_n]
$$

is dense and define f by

$$
f(t) = \bigcup_n \phi(\tau_n + t|b_n).
$$

The function f is clearly continuous. We shall prove that $f[H + s] \subseteq G_s$. To see this let $t \in [\tau_n] + s$. Then $s \in [\tau_n] + t = [\tau_n + t|b_n]$ and $f(t) \in [\phi(\tau_n + t|b_n)]$. So, if $\exists^{\infty} n \ t \in [\tau_n] + s$, then

$$
\exists^\infty n \; \exists \tau \in {}^{b_n}2 \langle s, f(t) \rangle \in [\tau] \times [\phi(\tau)].
$$

implying $\langle s, f(t) \rangle \in G$.

Notes: (0) Lemma 2 is just the easy (c) \Rightarrow (a) implication of the Galvin-Mycielski-Solovay theorem. A combination of Lemmas 1 and 3 gives the hard implication (a) \Rightarrow (b). A direct proof might be as follows. Given a comeager set H, find an increasing sequence $\langle a_n: n \in \omega \rangle \in \omega$ and sequences $\sigma_n \in \{a_n, a_{n+1}\}$ $(n \in \omega)$ such that $\bigvee_n [\sigma_n] \subseteq H$. If X is strongly null, there exist $\tau_n \in [\alpha_n, \alpha_{n+1})_2$ $(n \in \omega)$ such that $X \subseteq \bigvee_n [\tau_n]$. Let $t = \bigcup_n \sigma_n + \tau_n$. Then

$$
t+X\subseteq\bigvee_n[\sigma_n+\sigma_n+\tau_n]=\bigvee_n[\tau_n]\subseteq H.
$$

(1) Note that f in Proposition 2 can be chosen to be one-to-one (choose ϕ to be one-to-one). Also, the proposition can be reformulated as follows. If $G \subseteq {}^{\omega}2 \times {}^{\omega}2$ is a G_{δ} (resp. open) set with all vertical sections G_{s} ($s \in \mathcal{Q}$) dense, then there is a dense G_{δ} (resp. open) set $H \subseteq {}^{\omega}2$ and a continuous function $f: {}^{\omega}2 \to {}^{\omega}2$ such that $\forall t \ H + t \subseteq G^{f(t)}$ (the upper-script means horizontal section). Indeed, instead of $\forall s \ f[H + s] \subseteq G_s$, as in the proposition, we can write $f^*[H^*] \subseteq G$, where $H^* = \bigcup_{s \in \omega_2} \{s\} \times (H+s)$ and $f^* \colon {}^{\omega}2 \times {}^{\omega}2 \to {}^{\omega}2 \times {}^{\omega}2$, $f^*(\langle s, t \rangle) = \langle s, f(t) \rangle$. Then $\forall t \ (H^*)^t \subseteq G^{f(t)} \ \& \ (H^*)^t = H + t.$

The proposition remains true for \mathbb{R}/\mathbb{Z} (in fact, any compact Polish group). For **(in general, locally compact) it is true if we drop the 'open' part. To see** that we have to do this: Let $G \subseteq \mathbb{R} \times \mathbb{R}$ be an open set with all vertical sections G_{s} ($s \in \mathbf{R}$) dense and such that $\forall t \in \mathbf{R} \ \forall n \in \omega \ G^{t} \cap [n, \infty)$ contains no interval of size 2^{-n} (e.g., $G = \{(s, t): \forall n \in \omega \ (s \in [n, n + 1] \Rightarrow \forall k \in \mathbb{Z} \ t \neq s + k \cdot 2^{-n-1})\}).$ Then, if $H \cap [0, \infty)$ contains an interval of size 2^{-n} , then $(H + n) \cap [n, \infty)$ can't be covered by any G^t .

(2) Using the Andryszczak-Rectaw result it is not hard to see that the set $\mathbf{R} \setminus (D+X)$ in the Galvin-Mycielski-Solovay characterization is fairly thick. E.g., if X is strongly null, G an uncountable G_{δ} and D such that $G \cap (D+x)$ is meager in G for all $x \in \mathbf{R}$, then $G \setminus (D+X)$ contains a nonempty perfect set (see [P]). Note, however, that we can't claim that $D + X$ is meager. The continuum hypothesis implies that there exists a nonmeager strongly null set (such is a Lusin set, see [Mi]).

(3) It is not hard to strenghten the \Rightarrow implication of our theorem to: if $X \subseteq \mathbf{R}$ is strongly null then for every closed $F \subseteq \mathbf{R} \times \mathbf{R}$ with all vertical sections F_s ($s \in \mathbf{R}$) null, $\bigcup_{x \in X} F_x$ is null (see [P]).

A nonmeager strongly null set X shows again that in the \Rightarrow implication of our theorem we can't require that $F + X$ is coverable by a null \mathbf{F}_{σ} set (null \mathbf{F}_{σ} sets are meager). It also shows that we can't drop the requirement that F is closed. (By a theorem of Steinhaus, if A is nonmeager and B comeager then $A + B = \mathbf{R}$, so, if X is nonmeager strongly null and F is comeager null, then $F + X = \mathbf{R}$.)

(4) Galvin [G] shows that if $X \subseteq \mathbf{R}$ is such that for any dense \mathbf{G}_{δ} set $G \subseteq \mathbf{R}$ there exist $a \neq 0$ and b with $a \cdot X + b \subseteq G$, then X is strongly null. Passing to the complement of G we get that if $X \subseteq \mathbf{R}$ is such that for any meager $D \subseteq \mathbf{R}$ there exists $a \neq 0$ with $D + a \cdot X \neq \mathbf{R}$, then X is strongly null.

The \Leftarrow implication of our theorem can be strengthened in a similar way. Namely, if $X \subseteq \mathbf{R}$ is such that for any closed null set $F \subseteq \mathbf{R}$ there exists $a \neq 0$ with $F + a \cdot X$ null, then X is strongly null. Indeed, by Lemma 1, if for every closed null set $F \subseteq \mathbf{R}$ there is a with $F + a \cdot X$ null, then for every meager set $D \subseteq \mathbf{R}$ there is a with $D + a \cdot X \neq \mathbf{R}$.

(5) Recall that a set $X \subseteq \mathbf{R}$ is strongly meager iff for every null set $G \subseteq \mathbf{R}$, $G + X \neq \mathbf{R}$ (see [Mi]). One may think about the following dual theorem: a set $X \subseteq \mathbf{R}$ is strongly meager iff for every closed null set $F \subseteq \mathbf{R}$, $F + X$ is meager.

The \Rightarrow implication is an old unpublished result of Reclaw. A short proof might be as follows. Let F, a_n 's and F_n 's be as in the proof of Lemma 3. Then $\bigvee_n [F_n]$ is null and $F \subseteq \bigwedge_n [F_n]$. Since X is strongly meager, $\bigvee_n [F_n] + X \neq \omega$ 2. By Lemma 4, $\bigwedge_n [F_n] + X$ is meager.

The \Leftarrow implication is false: Suppose that in V the union of any \aleph_1 meager sets is meager. Let c be a Cohen real over V. Then in $V[c]$ we have: (\clubsuit) there is a null set G such that for every uncountable $X \subseteq \mathbf{R}^V$, $G + X = \mathbf{R}$ ([Ca]); (\spadesuit) the union of any \aleph_1 meager sets is meager. So, in $V[c]$ ([CP]), if $X \subseteq \mathbb{R}^V$ has size \aleph_1 , then X is not strongly meager (by (\clubsuit)) and $F + X$ is meager for all meager F (by (\spadesuit)).

Another attempt at a dual theorem can be: a set $X \subseteq \mathbf{R}$ is strongly meager iff for every nowheredense set $F \subseteq \mathbf{R}$, $F + X$ is meager. This is false in both directions. For \Leftarrow we argue as before. For \Rightarrow , if X is a nonnull strongly meager set (e.g., a Sierpinski set, see $[P]$) and F is a co-null meager set, then, by a theorem of Steinhaus, $F + X = \mathbf{R}$.

QUESTION: *Can we replace in our characterization* **R** by $(R/Z)^{\omega}$?

ACKNOWLEDGEMENT: The claim of Lemma 1 has been inspired by [BSh] and $[Sh]$.

References

- **[AR]** A. Andryszczak and I. Rectaw, *A note on strong measure* zero *sets,* Acta Universitatis Carolinae 34 (1993), 7-9.
- **[B]** T. Bartoszyński, *On covering the real line with null sets*, Pacific Journal of Mathematics 131 (1988), 1-12.
- **[BSh]** T. Bartoszyfiski and S. Shelah, *Closed* measure *zero sets,* Annals of Pure and Applied Logic 58 (1992), 93-110.
- **[Bo]** E. Borel, *Sur la classification des ensembles de* mesure *nulle,* Bulletin de la Société Mathématique de France 47 (1919), 97-125.
- **[Ca]** T. Carlson, *Strong measure zero* sets *and strongly* meager *sets,* Proceedings of the American Mathematical Society 118 (1993), 577-586.
- **[CP]** J. Cichofi and J. Pawlikowski, *On ideals of subsets of the plane and on Cohen* reals, Journal of Symbolic Logic 51 (1986), 560-569.
- **It]** F. Galvin, *Strong* measure *zero sets,* handwritten notes
- **[GMS]** F. Galvin, J. Mycielski and R. M. Solovay, *Strong measure zero sets,* Notices of the American Mathematical Society 26 (1979), A-280.
- **[Mi]** A. W. Miller, *Special subsets of the* real *line,* in *Handbook of Set-theoretical Topology* (K. Kunen and J.E. Vaughan, eds.), Elsevier Science Publishers B.V., Amsterdam, 1984.
- $[P]$ J. Pawlikowski, *Property C", strongly* meager *sets and subsets* of the *plane,* preprint.
- [Sh] S. Shelah, *Every null-additive set is meager-additive,* Israel Journal of Mathematics 89 (1995), 357-376.