A CHARACTERIZATION OF STRONG MEASURE ZERO SETS

ΒY

JANUSZ PAWLIKOWSKI*

Department of Mathematics, University of Wrocław pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland e-mail: pawlikow@math.uni.wroc.pl

ABSTRACT

We show that a set $X \subseteq \mathbf{R}$ has strong measure zero iff for every closed measure zero set $F \subseteq \mathbf{R}$, F + X has measure zero.

A set $X \subseteq \mathbf{R}$ is strongly null (has strong measure zero) iff for every sequence of positive real numbers $\langle \epsilon_n : n \in \omega \rangle$ there exists a sequence $\langle X_n : n \in \omega \rangle$ of subsets of \mathbf{R} such that $X \subseteq \bigcup_n X_n$ and the diameter of $X_n < \epsilon_n$ (see [Bo], [Mi]). Galvin, Mycielski and Solovay [GMS] characterized strongly null sets in the following way (see [G] or [Mi] for a proof):

THEOREM (Galvin, Mycielski and Solovay): Let $X \subseteq \mathbf{R}$. The following conditions are equivalent:

- (a) X is strongly null;
- (b) every dense \mathbf{G}_{δ} set contains a translate of X;
- (c) every open dense set contains a translate of X.

The Galvin–Mycielski–Solovay theorem can be rephrased as follows. A set $X \subseteq$ **R** is strongly null iff $D + X \neq \mathbf{R}$ for every meager (equivalently, nowheredense) set D. Indeed, just note that for $t \in \mathbf{R}$, $t \notin D + X$ iff $(-t) + X \subseteq \mathbf{R} \setminus (-D)$.

We shall prove the following theorem.

^{*} Supported by KBN grant PB 2 1017 91 01. Received January 10, 1994

THEOREM: A set $X \subseteq \mathbf{R}$ is strongly null iff F + X is null for every closed null set $F \subseteq \mathbf{R}$.

Strongly null sets can be defined for any metric space. For technical reasons we choose to work with the Cantor set $^{\omega}2$ rather than **R**. It is not hard to transfer our arguments to **R** and **R**/**Z** (and then, in fact, to any abelian locally compact finite dimensional Polish group).

Notation: ω is the set of nonnegative integers. For $n \in \omega$, $n = \{0, 1, \ldots, n-1\}$. For $A \subseteq \omega$ (finite or infinite), we endow ^A2 with the product structure arising from considering $2 = \{0, 1\}$ as the group of addition mod 2 with the discrete metric and measure μ such that $\mu(\{0\}) = \mu(\{1\}) = 1/2$. We denote the product measure in ^A2 by μ_A and usually drop the subscript. We say that sets $T_i \subseteq {}^{A}2$ $(i \in I)$ are measure independent if $\mu(\bigcap_{i \in J} T_i) = \prod_{i \in J} \mu(T_i)$ for every finite $J \subseteq I$. Note that if T_i 's are independent, then so are $({}^{A}2 \smallsetminus T_i)$'s

For $\tau \in {}^{A}2$, let $[\tau] = \{t \in {}^{\omega}2: \tau \subseteq t\}$. For $T \subseteq {}^{A}2$, let $[T] = \bigcup_{\tau \in T} [\tau]$. Given sets S_n $(n \in \omega)$, we write $\bigvee_n S_n$ for the upper limit $\bigcap_m \bigcup_{n>m} S_n$ and $\bigwedge_n S_n$ for the lower limit $\bigcup_m \bigcap_{n>m} S_n$. We also write $\exists^{\infty}n$ for $\forall m \exists n \ge m$ and $\forall^{\infty}n$ for $\exists m \forall n \ge m$. Thus, $t \in \bigvee_n [\tau_n]$ iff $\exists^{\infty}n \ \tau_n \subseteq t$ and $t \in \bigwedge_n [\tau_n]$ iff $\forall^{\infty}n \ \tau_n \subseteq t$.

If $B \subseteq A \subseteq \omega$, we identify ^A2 with ^B2 × ^{A > B}2. For $\tau \in {}^{B}2$ and $G \subseteq {}^{A}2$, let $G_{\tau} = \{\sigma \in {}^{A > B}2: \tau \cup \sigma \in G\}$ (we view G_{τ} as the section of $G \subseteq {}^{B}2 \times {}^{A > B}2$ determined by τ).

Let ${}^{<\omega}2 = \bigcup_n {}^n2.$

It is not hard to see that a set $X \subseteq {}^{\omega}2$ is strongly null iff for every sequence $\langle a_n: n \in \omega \rangle$ of integers there exist $\sigma_n \in {}^{a_n}2$ such that $X \subseteq \bigcup_n [\sigma_n]$. We can equally well write here $X \subseteq \bigvee_n [\sigma_n]$ (split ω into infinitely many infinite sets).

The following lemma, however trivial, is the key to everything.

LEMMA 0: Let $m \ge n + 2^n k$, $k, n, m \in \omega$. There exists $T \subseteq m^2$ such that $\mu(T) = 2^{-k}$ and for any $\langle \sigma_i, \tau_i \rangle \in m^2 \times [n,m)^2$ $(i \in I)$ with σ_i 's distinct, the sets $T + \langle \sigma_i, \tau_i \rangle$ $(i \in I)$ are measure independent.

Proof: Find 2ⁿ disjoint sets $u_{\sigma} \subseteq [n,m)$ ($\sigma \in {}^{n}2$), each of size k. Let $T_{\sigma} = \{\tau \in {}^{[n,m)}2: \tau | u_{\sigma} \equiv 0\}$. Then $\mu(T_{\sigma}) = 2^{-k}$. Also, if $\sigma_{i} \in {}^{n}2$ ($i \in I$) are distinct and $\tau_{i} \in {}^{[n,m)}2$ ($i \in I$) are arbitrary, then $T_{\sigma_{i}} + \tau_{i}$ ($i \in I$) are measure independent.

Let
$$T = \bigcup_{\sigma \in {}^{n}2} \{\sigma\} \times T_{\sigma}$$
. Then $\mu(T) = 2^{-k}$. If now $\sigma_i \in {}^{n}2 \ (i \in I)$ are distinct,

 $\tau_i \in {}^{[n,m)}2 \ (i \in I)$ are arbitrary, and $J \subseteq I$, then

$$\bigcap_{i \in J} T + \langle \sigma_i, \tau_i \rangle = \bigcap_{i \in J} \bigcup_{\sigma \in {}^{n_2}} \{\sigma + \sigma_i\} \times (T_{\sigma} + \tau_i)$$
$$= \bigcap_{i \in J} \bigcup_{\sigma \in {}^{n_2}} \{\sigma\} \times (T_{\sigma + \sigma_i} + \tau_i)$$
$$= \bigcup_{\sigma \in {}^{n_2}} \{\sigma\} \times \bigcap_{i \in J} (T_{\sigma + \sigma_i} + \tau_i).$$

Since for every σ , $(T_{\sigma+\sigma_i} + \tau_i)$'s are measure independent (because σ_i 's are distinct), it follows that $(T + \langle \sigma_i, \tau_i \rangle)$'s are measure independent.

Now comes the basic lemma.

LEMMA 1: For every comeager set $H \subseteq {}^{\omega}2$ there is a closed null set $F \subseteq {}^{\omega}2$ such that for every $X \subseteq {}^{\omega}2$ with F + X null there is $t \in {}^{\omega}2$ with $t + X \subseteq H$.

Proof: Fix a comeager set $H \subseteq {}^{\omega}2$. Choose integers

$$a_0 = 0,$$

 $a_n = a_n^0 < a_n^1 < \dots < a_n^{n \cdot 2^{a_n}} = b_n,$
 $a_{n+1} = b_n + 2^{b_n - a_n},$

and sequences

$$\sigma_n^i\colon [a_n^i, a_n^{i+1}) \to 2,$$

such that

$$\{s \in {}^{\omega}2: \exists^{\infty}n \exists i \sigma_n^i \subseteq s\} \subseteq H.$$

(If $H \supseteq \bigcap_n H_n$, H_n open dense, choose σ_n^i so that $[\sigma_n^i] \subseteq \bigcap_{m \le n} H_m$.)

Find $F_n \subseteq [a_n, a_{n+1})^2$ with $\mu(F_n) = 1/2$ such that, whenever $\sigma_i \in [a_n, a_{n+1})^2$ $(i \in I)$ have distinct restrictions to $[a_n, b_n)$, then $(F_n + \sigma_i)$'s are measure independent. Let $F = \bigcap_n [F_n]$. Then F is closed and null. Suppose that F + X is null.

CLAIM: There exist $K_n \subseteq [a_n, b_n] 2$ $(n \in \omega)$ with $|K_n| \leq n \cdot 2^{a_n}$ such that

$$\forall x \in X \; \exists^{\infty} n \; x | [a_n, b_n) \in K_n.$$

Proof: Let $G \subseteq {}^{\omega}2$ be an open set covering ${}^{<\omega}2 + F + X$ such that $\mu(G) < \prod_n \epsilon_n$, where $\epsilon_n = 1 - 2^{-(n+1)}$. Let

$$K_n = \{ \sigma | [a_n, b_n) \colon \sigma \in [a_n, a_{n+1}] 2 \& \exists \tau \in a_n 2 F_n + \sigma \subseteq L_\tau \},\$$

where

$$L_{\tau} = \{ \sigma \in [a_n, a_{n+1}) : \mu(G_{\tau \cup \sigma}) > \mu(G_{\tau}) / \epsilon_n \}.$$

We have

$$|K_n| \le n \cdot 2^{a_n}.$$

Indeed, fix $\tau \in {}^{a_n}2$. By the Fubini theorem applied to $G_{\tau} \subseteq {}^{[a_n,a_{n+1})}2 \times {}^{[a_{n+1},\omega)}2$, $\mu(L_{\tau}) < \epsilon_n$. Let $\sigma_k \in {}^{[a_n,a_{n+1})}2$ $(k < k_{\tau})$ be such that $F_n + \sigma_k \subseteq L_{\tau}$ and all $\sigma_k | [a_n, b_n)$ are distinct. Then

$$\bigcap_{k} {}^{[a_n,a_{n+1})} 2 \smallsetminus (F_n + \sigma_k) \supseteq {}^{[a_n,a_{n+1})} 2 \smallsetminus L_{\tau}.$$

So, using independence,

$$2^{-k_{\tau}} = (1 - 1/2)^{k_{\tau}}$$

$$\geq 1 - \mu(L_{\tau})$$

$$> 1 - \epsilon_n = 2^{-(n+1)},$$

hence $k_{\tau} \leq n$. The estimation for $|K_n|$ follows.

We shall now show that $\forall x \in X \exists^{\infty} n \ x | [a_n, b_n) \in K_n$. Fix $x \in X$. It is enough to show

$$\exists^{\infty} n \ \exists \tau \in {}^{a_n} 2 \ F_n + x | [a_n, a_{n+1}) \subseteq L_{\tau}.$$

Suppose this is not true. Then

$$\forall^{\infty} n \ \forall \tau \in {}^{a_n} 2 \ F_n + x | [a_n, a_{n+1}) \not\subseteq L_{\tau}.$$

So there is m such that

$$\forall n \ge m \ \forall \tau \in {}^{a_n} 2 \ \exists \sigma \in F_n + x | [a_n, a_{n+1}) \ \mu(G_{\tau \cup \sigma}) \le \mu(G_{\tau}) / \epsilon_n.$$

Note also that for every n and $\tau \in a_n 2$, by the Fubini theorem applied to $G_{\tau} \subseteq [a_n, a_{n+1}) 2 \times [a_{n+1}, \omega) 2$,

$$\exists \sigma \in {}^{[a_n, a_{n+1})} 2 \ \mu(G_{\tau \cup \sigma}) \le \mu(G_{\tau}) \le \mu(G_{\tau}) / \epsilon_n.$$

Now we can inductively define $t \in {}^{\omega}2$ such that

$$\forall n \ge m, \quad t | [a_n, a_{n+1}) \in F_n + x | [a_n, a_{n+1})$$

174

and

$$\forall n \quad \epsilon_n \mu(G_{t|a_{n+1}}) \le \mu(G_{t|a_n}).$$

Then $t \in {}^{<\omega}2 + F + x$, so $t \in G$. Since G is open, there is n with $\mu(G_{t|a_{n+1}}) = 1$. Then

$$\epsilon_0 \cdots \epsilon_n = \epsilon_0 \cdots \epsilon_n \mu(G_{t|a_{n+1}}) \le \mu(G_{t|a_0}) = \mu(G),$$

which contradicts $\mu(G) < \prod_n \epsilon_n$. \blacksquare (Claim)

١

We shall now show how to get t with $t + X \subseteq H$. Let $K_n = \{\tau_n^i : i < n \cdot 2^{a_n}\}$. Let $t \in {}^{\omega}2$ be any extension of $\bigcup_{n,i} \sigma_n^i + \tau_n^i | [a_n^i, a_n^{i+1}]$. By the claim, given $x \in X$, $\exists^{\infty}n \ \exists i \ x \supseteq \tau_n^i | [a_n^i, a_n^{i+1}]$. So,

$$\exists^{\infty}n \ \exists i \ t+x \supseteq \sigma_n^i + \tau_n^i | [a_n^i,a_n^{i+1}) + \tau_n^i | [a_n^i,a_n^{i+1}) = \sigma_n^i.$$

It follows that $t + x \in H$.

The following two lemmas are folklore.

LEMMA 2: If for every open dense set $H \subseteq {}^{\omega}2$ there exists $t \in {}^{\omega}2$ with $t + X \subseteq H$, then X is strongly null.

Proof: Fix an increasing sequence of integers $\langle a_n : n \in \omega \rangle$. Choose $\tau_n \in {}^{a_n} 2$ so that $H = \bigcup_n [\tau_n]$ is dense. Let $t \in {}^{\omega} 2$ be such that $X \subseteq H + t$. Then the sequence $\langle \tau_n + t | a_n : n \in \omega \rangle$ witnesses for $\langle a_n : n \in \omega \rangle$ that X is strongly null.

LEMMA 3: Suppose that $X \subseteq {}^{\omega}2$ is strongly null and $F \subseteq {}^{\omega}2$ is closed null. Then F + X is null.

Proof: Fix an increasing sequence of integers $\langle a_n: n \in \omega \rangle$ and sets $F_n \subseteq [a_n, a_{n+1})^2$ of measure $\leq 2^{-n}$ so that $F \subseteq \bigcap [F_n]$. Since X is strongly null, there exist $\tau_n \in [a_n, a_{n+1})^2$ such that $X \subseteq \bigvee_n [\tau_n]$. Now,

$$F + X \subseteq \bigvee_{n} [F_n + \tau_n].$$

Since $\mu(F_n + \tau_n) \leq 2^{-n}$, it follows that F + X is null.

Proof of Theorem: Suppose that F + X is null for all closed null $F \subseteq {}^{\omega}2$. Then, by Lemma 1, X can be translated into any comeager set. So, by Lemma 2, X is strongly null. The other direction follows by Lemma 3.

Note that we have also proved the Galvin-Mycielski-Solovay theorem.

The nontrivial implication in our theorem can be rephrased as follows. If F + X is null for all closed null $F \subseteq \mathbf{R}$, then $F + X \neq \mathbf{R}$ for all meager $F \subseteq \mathbf{R}$. This is a distant analogue of the following theorem of Shelah [Sh].

THEOREM (Shelah): If F + X is null for all null $F \subseteq \mathbf{R}$, then F + X is meager for all meager $F \subseteq \mathbf{R}$.

We shall now modify Lemma 1 so that it would yield Shelah's theorem. First let us record the following elementary lemma.

LEMMA 4: Let $A_n \subseteq \omega$ $(n \in \omega)$ be finite and pairwise disjoint. Let $\tau_n = A_n \times \{0\}$ and let $T_n \subseteq A_n 2$ $(n \in \omega)$ be nonempty. Then

- (a) $\bigvee_n [\tau_n]$ and $\bigvee_n [T_n]$ are comeager;
- (b) $\bigvee_n [T_n] = \bigwedge_n [T_n] + \bigvee_n [\tau_n] = \bigvee_n [T_n] + \bigwedge_n [\tau_n];$
- (c) if $Y \subseteq {}^{\omega}2$ is such that $Y + \bigvee_n [T_n] \neq {}^{\omega}2$, then $Y + \bigwedge_n [T_n]$ is measured.

Proof: (a) and (b) are clear. For (c), note that if $t \notin Y + \bigvee_n [T_n]$, then $t \notin Y + \bigwedge_n [T_n] + \bigvee_n [\tau_n]$. It follows that $t + \bigvee_n [\tau_n]$ is disjoint with $Y + \bigwedge_n [T_n]$.

PROPOSITION 1: For every meager set $D \subseteq \omega^2$ there exist an increasing sequence $\langle a_n: n \in \omega \rangle \in \omega$ and sets $F_n, T_n \subseteq [a_n, a_{n+1})^2$ of measure $\leq 2^{-n}$ (so $\bigvee_n [F_n]$, $\bigvee_n [T_n]$ are null, and $\bigwedge_n [F_n], \bigwedge_n [T_n]$ are null \mathbf{F}_{σ}) such that $D + \bigvee_n [T_n] \neq \omega^2$, $D + \bigwedge_n [T_n]$ is meager, and

- (\clubsuit) every $X \subseteq {}^{\omega}2$ for which $\bigwedge_n[F_n] + X$ is null can be translated into $\bigvee_n[T_n]$ (thus, if $\bigwedge_n[F_n] + X$ is null then $D + X \neq {}^{\omega}2$);
- (\bigstar) every $X \subseteq {}^{\omega}2$ for which $\bigvee_n[F_n] + X$ is null can be translated into $\bigwedge_n[T_n]$ (thus, if $\bigvee_n[F_n] + X$ is null then D + X is meager).

Proof: Fix a measure set $D \subseteq {}^{\omega}2$. Let $c_n \in \omega$ be large enough with respect to n (e.g., $c_n = 2^{2n+1}$). Choose integers

$$a_0 = 0,$$

 $a_n = a_n^0 < a_n^1 < \dots < a_n^{c_n \cdot 2^{a_n}} = b_n,$
 $a_{n+1} = b_n + 2^{b_n - a_n} \cdot n,$

and sequences

$$\sigma_n^i\colon [a_n^i, a_n^{i+1}) \to 2,$$

such that

$$\{s\in {}^{\omega}2:\exists {}^{\infty}n \exists i \sigma_n^i \subseteq s\} \subseteq {}^{\omega}2 \smallsetminus D.$$

Make sure that

$$a_n^{i+1} - a_n^i \ge d_n,$$

where $d_n \in \omega$ are such that

$$2^{-d_n} \cdot c_n \cdot 2^{a_n} \le 2^{-n}.$$

Define now

$$T_n = \{ \tau \in [a_n, a_{n+1}] 2: \exists i \ \tau | [a_n^i, a_n^{i+1}] \equiv 0 \}.$$

Then

$$\mu(T_n) \le 2^{-d_n} \cdot c_n \cdot 2^{a_n} \le 2^{-n}.$$

Also it is not hard to see that if $s \in {}^{\omega}2$ is such that $\bigcup_{i,n} \sigma_n^i \subseteq s$, then

$$s + \bigvee_n [T_n] \subseteq {}^{\omega}2 \smallsetminus D.$$

It follows that $D + \bigvee_n [T_n] \neq \ ^{\omega}2$, hence, by Lemma 4, $D + \bigwedge_n [T_n]$ is meager.

Now choose sets $F_n \subseteq [a_n, a_{n+1})^2$ $(n \in \omega)$ so that $\mu(F_n) = 2^{-n}$ and whenever $\sigma_i \in [a_n, a_{n+1})^2$ $(i \in I)$ have distinct restrictions to $[a_n, b_n)$ then $(F_n + \sigma_i)$'s are measure independent.

(\clubsuit) Suppose that $\bigwedge_n [F_n] + X$ is null.

CLAIM: There exist $K_n \subseteq [a_n, b_n] 2$ $(n \in \omega)$ with $|K_n| \leq c_n \cdot 2^{a_n}$ such that

$$\forall x \in X \exists^{\infty} n x | [a_n, b_n) \in K_n.$$

Proof: Let $G \subseteq {}^{\omega}2$ be an open set covering $\bigwedge_n [F_n] + X$ such that $\mu(G) < \prod_n \epsilon_n$ (as in Lemma 1, $\epsilon_n = 1 - 2^{-(n+1)}$). Let

$$K_n = \{\sigma | [a_n, b_n) \colon \sigma \in {}^{[a_n, a_{n+1}]} 2 \& \exists \tau \in {}^{a_n} 2 F_n + \sigma \subseteq L_\tau \},\$$

where

$$L_{\tau} = \{ \sigma \in [a_n, a_{n+1}) 2 \colon \mu(G_{\tau \cup \sigma}) > \mu(G_{\tau}) / \epsilon_n \}.$$

We have

$$|K_n| \le c_n \cdot 2^{a_n}.$$

Indeed, fix $\tau \in {}^{a_n}2$. By the Fubini theorem applied to $G_{\tau} \subseteq {}^{[a_n,a_{n+1})}2 \times {}^{[a_{n+1},\omega)}2$, $\mu(L_{\tau}) < \epsilon_n$. Let $\sigma_k \in {}^{[a_n,a_{n+1})}2$ $(k < k_{\tau})$ be such that $F_n + \sigma_k \subseteq L_{\tau}$ and all $\sigma_k | [a_n, b_n)$ are distinct. Then

$$\bigcap_{k} [a_{n}, a_{n+1}) 2 \smallsetminus (F_{n} + \sigma_{k}) \supseteq [a_{n}, a_{n+1}) 2 \smallsetminus L_{\tau}.$$

So, by independence,

$$(1-2^{-n})^{k_{\tau}} \ge 1-\mu(L_{\tau}) > 1-\epsilon_n = 2^{-(n+1)},$$

hence $k_{\tau} \leq c_n$. The estimation for $|K_n|$ follows.

The rest of the proof of the claim is as in Lemma 1. \blacksquare (Claim)

Let now $K_n = \{\tau_n^i : i < c_n \cdot 2^{a_n}\}$. By the claim, for any $t \in {}^{\omega}2$ such that

$$\bigcup_{n,i} \tau_n^i | [a_n^i, a_n^{i+1}) \subseteq t$$

we have

$$t + X \subseteq \bigvee_{n} [T_n].$$

Indeed, if $\tau_n^i \subseteq x \in X$, then $(t+x)|[a_n^i, a_n^{i+1}) \equiv 0$. \blacksquare (♣)

(\blacklozenge) Suppose that $\bigvee_n [F_n] + X$ is null.

CLAIM: There exist $K_n \subseteq [a_n, b_n] 2$ $(n \in \omega)$ with $|K_n| \leq c_n \cdot 2^{a_n}$ such that

$$\forall x \in X \quad \forall^{\infty} n \quad x | [a_n, b_n) \in K_n.$$

Proof: Let G be an open set covering $\bigvee_n [F_n] + X$ such that $\mu(G) < 1$ and for every $\tau \in {}^{<\omega}2$ with $[\tau] \not\subseteq G$ we have $\mu([\tau] \smallsetminus G) > 0$. For such τ let

$$K_{\tau,n} = \{\sigma | [a_n, b_n) \colon \sigma \in {}^{[a_n, a_{n+1})}2 \& [F_n + \sigma] \cap ([\tau] \setminus G) = \emptyset \}.$$

We have

$$\sum_{n} |K_{\tau,n}| \cdot 2^{-n} < \infty.$$

Indeed, let $k_n = |K_{\tau,n}|$ and choose $\sigma_n^k \in [a_n, a_{n+1})^2$ $(k < k_n)$ so that $\sigma_n^k | [a_n, b_n)$'s are distinct and give all $K_{\tau,n}$. Then

$$\bigcap_{n,k}^{\omega} 2 \cdot [F_n + \sigma_n^k] \supseteq [\tau] \cdot G.$$

So, by independence,

$$\prod_{n} (1 - 2^{-n})^{k_n} > 0.$$

It follows that

$$\sum_{n} k_n \cdot 2^{-n} < \infty.$$

For each τ as above choose now $n_{\tau} \in \omega$ so that

$$\sum_{\tau} \sum_{n \ge n_{\tau}} |K_{\tau,n}| \cdot 2^{-n} < \infty.$$

Let

$$K_n = \bigcup \{ K_{\tau,n} : \tau \text{ is such that } n_\tau \leq n \}.$$

Then $\sum_{n} |K_n| \cdot 2^{-n} < \infty$, so

$$\forall^{\infty} n \quad |K_n| \le 2^n \le c_n \cdot 2^{a_n}$$

We shall, without loss of generality, drop ∞ in this estimation.

Fix now $x \in X$. We shall show that

$$\forall^{\infty} n \quad x | [a_n, b_n) \in K_n.$$

We have

$$(\bigvee_{n} [F_{n}] + x) \cap ({}^{\omega}2 \smallsetminus G) = \emptyset.$$

By Baire's category theorem applied to ${}^{\omega}2 \smallsetminus G$, there is $m \in \omega$ and $\tau \in {}^{<\omega}2$ with $[\tau] \cap ({}^{\omega}2 \smallsetminus G) \neq \emptyset$ such that

$$\left(\bigcup_{n\geq m} [F_n+x|[a_n,a_{n+1})]\right)\cap ([\tau]\smallsetminus G)=\emptyset.$$

Then for $n \geq \max(n_{\tau}, m)$ we have

$$x|[a_n, b_n) \in K_n.$$
 \blacksquare (Claim)

Let now $K_n = \{\tau_n^i : i < c_n \cdot 2^{a_n}\}$. By the claim, for any $t \in {}^{\omega}2$ such that

$$\bigcup_{n,i} \tau_n^i | [a_n^i, a_n^{i+1}) \subseteq t$$

we have

$$t + X \subseteq \bigwedge_{n} [T_n].$$
 $\blacksquare (\spadesuit)$

J. PAWLIKOWSKI

Bartoszyński (personal communication) noted that Shelah's [Sh] proof gives a null set $G \subseteq {}^{\omega}2$ such that any $X \subseteq {}^{\omega}2$ for which G + X is null can be translated into G. Since the set G was in a natural way obtained as a union of two null sets, it seemed improbable that G itself could be small, where small is taken in the sense of Bartoszyński [B]. (A set $G \subseteq {}^{\omega}2$ is small if there is a partition of ω into finite sets A_n $(n \in \omega)$ and there exist $S_n \subseteq {}^{A_n}2$ $(n \in \omega)$ such that $G \subseteq \bigvee_n [S_n]$ and $\sum_n \mu(S_n) < \infty$. Bartoszyński [B] showed that every null set is a union of two small sets and that there exist null sets that are not small.)

Using Proposition 1 we can find a set G which is small and has the above properties.

COROLLARY: There exists a small set $G \subseteq {}^{\omega}2$ such that any $X \subseteq {}^{\omega}2$ for which G + X is null can be translated into G.

Proof: In the notation of Proposition 1 take $D = \emptyset$ and let $G = \bigwedge_n [F_n] \cup \bigvee_n [T_n]$ (or, $G = \bigvee_n [F_n] \cup \bigwedge_n [T_n]$). Then G is small. Indeed, let $A_n = [a_n, a_{n+1})$ and $S_n = F_n \cup T_n \ (n \in \omega)$. Then $G \subseteq \bigvee_n [S_n]$ and $\forall n \ \mu(S_n) \leq 2^{-n+1}$. Now, if G + X is null, then $\bigwedge_n [F_n] + X$ (resp. $\bigvee_n [F_n] + X$) is null, so, by (\clubsuit) (resp. (\blacklozenge)), X can be translated into $\bigvee_n [T_n] \subseteq G$ (resp. $\bigwedge_n [T_n] \subseteq G$).

Recently Andryszczak and Recław [AR] strengthened the (a) \Rightarrow (b) implication of the Galvin-Mycielski-Solovay characterization to: if $X \subseteq \mathbf{R}$ is strongly null then for every \mathbf{G}_{δ} set $G \subseteq \mathbf{R} \times \mathbf{R}$ all of whose vertical sections G_s ($s \in \mathbf{R}$) are dense, $\bigcap_{x \in X} G_x \neq \emptyset$. (This was also known to Galvin.)

The following proposition shows how the Andryszczak-Recław result can be obtained from the Galvin-Mycielski-Solovay characterization.

PROPOSITION 2: Let $G \subseteq {}^{\omega}2 \times {}^{\omega}2$ be a \mathbf{G}_{δ} (resp. open) set with all vertical sections G_s ($s \in {}^{\omega}2$) dense. Then there is a dense \mathbf{G}_{δ} (resp. open) set $H \subseteq {}^{\omega}2$ and a continuous function $f : {}^{\omega}2 \to {}^{\omega}2$ such that $\forall s f[H+s] \subseteq G_s$. In particular, if $X \subseteq {}^{\omega}2$ and $t \in {}^{\omega}2$ are such that $t + X \subseteq H$, then $f(t) \in \bigcap_{x \in X} G_x$.

Proof: We do it for \mathbf{G}_{δ} . Find increasing $\langle a_n : n \in \omega \rangle$, $\langle b_n : n \in \omega \rangle \in {}^{\omega}\omega$, $a_0 = 0$, and $\phi(\tau) \in {}^{\{a_n, a_{n+1}\}}2$ ($\tau \in {}^{b_n}2$) such that

$$\bigcap_{m} \bigcup_{n>m} \bigcup_{\tau \in {}^{b_n} 2} [\tau] \times [\phi(\tau)] \subseteq G.$$

Next choose $\tau_n \in {}^{b_n} 2 \ (n \in \omega)$ so that

$$H = \bigcap_{m} \bigcup_{n > m} [\tau_n]$$

is dense and define f by

$$f(t) = \bigcup_n \phi(\tau_n + t | b_n).$$

The function f is clearly continuous. We shall prove that $f[H+s] \subseteq G_s$. To see this let $t \in [\tau_n] + s$. Then $s \in [\tau_n] + t = [\tau_n + t|b_n]$ and $f(t) \in [\phi(\tau_n + t|b_n)]$. So, if $\exists^{\infty} n \ t \in [\tau_n] + s$, then

$$\exists^{\infty} n \; \exists \tau \in {}^{b_n} 2 \; \langle s, f(t) \rangle \in [\tau] \times [\phi(\tau)],$$

implying $\langle s, f(t) \rangle \in G$.

Notes: (0) Lemma 2 is just the easy (c) \Rightarrow (a) implication of the Galvin-Mycielski-Solovay theorem. A combination of Lemmas 1 and 3 gives the hard implication (a) \Rightarrow (b). A direct proof might be as follows. Given a comeager set H, find an increasing sequence $\langle a_n : n \in \omega \rangle \in {}^{\omega}\omega$ and sequences $\sigma_n \in [a_n, a_{n+1})^2$ $(n \in \omega)$ such that $\bigvee_n [\sigma_n] \subseteq H$. If X is strongly null, there exist $\tau_n \in [a_n, a_{n+1})^2$ $(n \in \omega)$ such that $X \subseteq \bigvee_n [\tau_n]$. Let $t = \bigcup_n \sigma_n + \tau_n$. Then

$$t + X \subseteq \bigvee_{n} [\sigma_{n} + \sigma_{n} + \tau_{n}] = \bigvee_{n} [\tau_{n}] \subseteq H.$$

(1) Note that f in Proposition 2 can be chosen to be one-to-one (choose ϕ to be one-to-one). Also, the proposition can be reformulated as follows. If $G \subseteq {}^{\omega}2 \times {}^{\omega}2$ is a \mathbf{G}_{δ} (resp. open) set with all vertical sections G_s ($s \in {}^{\omega}2$) dense, then there is a dense \mathbf{G}_{δ} (resp. open) set $H \subseteq {}^{\omega}2$ and a continuous function $f: {}^{\omega}2 \to {}^{\omega}2$ such that $\forall t \ H + t \subseteq G^{f(t)}$ (the upper-script means horizontal section). Indeed, instead of $\forall s \ f[H + s] \subseteq G_s$, as in the proposition, we can write $f^*[H^*] \subseteq G$, where $H^* = \bigcup_{s \in {}^{\omega}2} \{s\} \times (H + s)$ and $f^*: {}^{\omega}2 \times {}^{\omega}2 \to {}^{\omega}2 \times {}^{\omega}2$, $f^*(\langle s, t \rangle) = \langle s, f(t) \rangle$. Then $\forall t \ (H^*)^t \subseteq G^{f(t)} \& \ (H^*)^t = H + t$.

The proposition remains true for \mathbf{R}/\mathbf{Z} (in fact, any compact Polish group). For \mathbf{R} (in general, locally compact) it is true if we drop the 'open' part. To see that we have to do this: Let $G \subseteq \mathbf{R} \times \mathbf{R}$ be an open set with all vertical sections G_s ($s \in \mathbf{R}$) dense and such that $\forall t \in \mathbf{R} \ \forall n \in \omega \ G^t \cap [n, \infty)$ contains no interval of size 2^{-n} (e.g., $G = \{\langle s, t \rangle : \forall n \in \omega \ (s \in [n, n+1] \Rightarrow \forall k \in \mathbf{Z} \ t \neq s + k \cdot 2^{-n-1})\}$). Then, if $H \cap [0, \infty)$ contains an interval of size 2^{-n} , then $(H + n) \cap [n, \infty)$ can't be covered by any G^t .

(2) Using the Andryszczak-Recław result it is not hard to see that the set $\mathbf{R} \setminus (D+X)$ in the Galvin-Mycielski-Solovay characterization is fairly thick. E.g.,

if X is strongly null, G an uncountable \mathbf{G}_{δ} and D such that $G \cap (D+x)$ is meager in G for all $x \in \mathbf{R}$, then $G \setminus (D+X)$ contains a nonempty perfect set (see [P]). Note, however, that we can't claim that D + X is meager. The continuum hypothesis implies that there exists a nonmeager strongly null set (such is a Lusin set, see [Mi]).

(3) It is not hard to strenghten the \Rightarrow implication of our theorem to: if $X \subseteq \mathbf{R}$ is strongly null then for every closed $F \subseteq \mathbf{R} \times \mathbf{R}$ with all vertical sections F_s $(s \in \mathbf{R})$ null, $\bigcup_{x \in X} F_x$ is null (see [P]).

A nonmeager strongly null set X shows again that in the \Rightarrow implication of our theorem we can't require that F + X is coverable by a null \mathbf{F}_{σ} set (null \mathbf{F}_{σ} sets are meager). It also shows that we can't drop the requirement that F is closed. (By a theorem of Steinhaus, if A is nonmeager and B comeager then $A + B = \mathbf{R}$, so, if X is nonmeager strongly null and F is comeager null, then $F + X = \mathbf{R}$.)

(4) Galvin [G] shows that if $X \subseteq \mathbf{R}$ is such that for any dense \mathbf{G}_{δ} set $G \subseteq \mathbf{R}$ there exist $a \neq 0$ and b with $a \cdot X + b \subseteq G$, then X is strongly null. Passing to the complement of G we get that if $X \subseteq \mathbf{R}$ is such that for any meager $D \subseteq \mathbf{R}$ there exists $a \neq 0$ with $D + a \cdot X \neq \mathbf{R}$, then X is strongly null.

The \Leftarrow implication of our theorem can be strengthened in a similar way. Namely, if $X \subseteq \mathbf{R}$ is such that for any closed null set $F \subseteq \mathbf{R}$ there exists $a \neq 0$ with $F + a \cdot X$ null, then X is strongly null. Indeed, by Lemma 1, if for every closed null set $F \subseteq \mathbf{R}$ there is a with $F + a \cdot X$ null, then for every meager set $D \subseteq \mathbf{R}$ there is a with $D + a \cdot X \neq \mathbf{R}$.

(5) Recall that a set $X \subseteq \mathbf{R}$ is strongly meager iff for every null set $G \subseteq \mathbf{R}$, $G + X \neq \mathbf{R}$ (see [Mi]). One may think about the following dual theorem: a set $X \subseteq \mathbf{R}$ is strongly meager iff for every closed null set $F \subseteq \mathbf{R}$, F + X is meager.

The \Rightarrow implication is an old unpublished result of Reclaw. A short proof might be as follows. Let F, a_n 's and F_n 's be as in the proof of Lemma 3. Then $\bigvee_n [F_n]$ is null and $F \subseteq \bigwedge_n [F_n]$. Since X is strongly meager, $\bigvee_n [F_n] + X \neq \omega_2$. By Lemma 4, $\bigwedge_n [F_n] + X$ is meager.

The \Leftarrow implication is false: Suppose that in V the union of any \aleph_1 meager sets is meager. Let c be a Cohen real over V. Then in V[c] we have: (\clubsuit) there is a null set G such that for every uncountable $X \subseteq \mathbf{R}^V$, $G + X = \mathbf{R}$ ([Ca]); (\bigstar) the union of any \aleph_1 meager sets is meager. So, in V[c] ([CP]), if $X \subseteq \mathbf{R}^V$ has size \aleph_1 , then X is not strongly meager (by (\clubsuit)) and F + X is meager for all meager F (by (\bigstar)). Another attempt at a dual theorem can be: a set $X \subseteq \mathbf{R}$ is strongly meager iff for every nowheredense set $F \subseteq \mathbf{R}$, F + X is meager. This is false in both directions. For \Leftarrow we argue as before. For \Rightarrow , if X is a nonnull strongly meager set (e.g., a Sierpiński set, see [P]) and F is a co-null meager set, then, by a theorem of Steinhaus, $F + X = \mathbf{R}$.

QUESTION: Can we replace in our characterization **R** by $(\mathbf{R}/\mathbf{Z})^{\omega}$?

ACKNOWLEDGEMENT: The claim of Lemma 1 has been inspired by [BSh] and [Sh].

References

- [AR] A. Andryszczak and I. Recław, A note on strong measure zero sets, Acta Universitatis Carolinae 34 (1993), 7–9.
- [B] T. Bartoszyński, On covering the real line with null sets, Pacific Journal of Mathematics 131 (1988), 1-12.
- [BSh] T. Bartoszyński and S. Shelah, Closed measure zero sets, Annals of Pure and Applied Logic 58 (1992), 93-110.
- [Bo] E. Borel, Sur la classification des ensembles de mesure nulle, Bulletin de la Société Mathématique de France 47 (1919), 97–125.
- [Ca] T. Carlson, Strong measure zero sets and strongly meager sets, Proceedings of the American Mathematical Society 118 (1993), 577-586.
- [CP] J. Cichoń and J. Pawlikowski, On ideals of subsets of the plane and on Cohen reals, Journal of Symbolic Logic 51 (1986), 560-569.
- [G] F. Galvin, Strong measure zero sets, handwritten notes
- [GMS] F. Galvin, J. Mycielski and R. M. Solovay, Strong measure zero sets, Notices of the American Mathematical Society 26 (1979), A-280.
- [Mi] A. W. Miller, Special subsets of the real line, in Handbook of Set-theoretical Topology (K. Kunen and J.E. Vaughan, eds.), Elsevier Science Publishers B.V., Amsterdam, 1984.
- [P] J. Pawlikowski, Property C", strongly meager sets and subsets of the plane, preprint.
- [Sh] S. Shelah, Every null-additive set is meager-additive, Israel Journal of Mathematics 89 (1995), 357–376.