
ISRAEL JOURNAL OF MATHEMATICS 93 (1996), 171-183 

A CHARACTERIZATION OF 
STRONG MEASURE ZERO SETS 

BY 

J A N U S Z  P A W L I K O W S K I *  

Department of Mathematics, University of Wroctaw 
pl. Grunwaldzki 2/4, 50-384 Wroc~aw, Poland 

e-mail: pawlikow@math.uni.wroc.pl 

ABSTRACT 

We show that a set X C_ R has strong measure zero iff for every closed 

measure zero set F C_ R, F "Jr X has measure zero. 

A set X _C R is strongly null (has strong measure zero) iff for every sequence of 

positive real numbers (Ca: n E a~) there exists a sequence (Xn: n E w> of subsets 

of R such that X C_ Un X n  and the diameter of Xn < e~ (see [Bo], [Mi]). Galvin, 

Mycielski and Solovay [GMS] characterized strongly null sets in the following way 

(see [G] or [Mi] for a proof): 

THEOREM (Galvin, Mycielski and Solovay): Let X C_ R. The following condi- 

tions are equivalent: 

(a) X is strongly null; 

(b) every dense G~ set contains a translate of X ;  

(c) every open dense set contains a translate of X .  

The Galvin-Mycielski-Solovay theorem can be rephrased as follows. A set X C_ 

R is strongly null iff D + X r R for every meager (equivalently, nowheredense) 

set D. Indeed, just note that for t C R, t ~ D + X iff ( - t )  + X C R \ ( - D ) .  

We shall prove the following theorem. 
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Received January 10, 1994 

171 



172 J. PAWLIKOWSKI Isr. J. Math. 

THEOREM: A set X C_ I t  is strongly null iff F + X is null for every closed null 

set F C It .  

Strongly null sets can be defined for any metric space. For technical reasons we 

choose to work with the Cantor set ~2 rather than It.  It is not hard to transfer 

our arguments to t t  and I t / Z  (and then, in fact, to any abelian locally compact 

finite dimensional Polish group). 

Notation: w is the set of nonnegative integers. For n E w, n = {0, 1 , . . . ,  n - 1}. 

For A C_ w (finite or infinite), we endow A2 with the product structure arising 

from considering 2 = {0, 1} as the group of addition mod 2 with the discrete 

metric and measure # such that #({0}) = #({1}) = 1/2. We denote the product 

measure in A2 by PA and usually drop the subscript. We say that sets Ti C_ A2 

(i E I)  are measure independent if #(N~eJ Ti) = rI~eJ #(T~) for every finite 

J C_ I. Note that if Ti's are independent, then so are (A2 \ Ti)'s 

For ~- E A2, let [T] = {t E ~2: T C_ t}. For T C A2, let [T] = U~eT[T]. Given 

sets Sn (n E w), we write Vn Sn for the upper limit Am Un>m Sn and An Sn for 

the lower limit Um Nn>m Sn. We also write 3~176 for Vm3n  > m and V~176 for 

3mVn >>_ m. Thus, t E Vn[rn] iff 3~176 rn C_ t and t E An[Tn] iff V~176 Tn _C t. 

If B C_ A C_ w, we identify A2 with B2 x A--B2. For 7 E B2 and G C_ A2, let 

G~- ~- {o r E A-- B2:  T U (7 E G }  (we view G~ as the section of G C_ B2 X A ~- s 2 

determined by T). 

Let <~2 = U~ n2. 

It is not hard to see that a set X C_ ~ is strongly null iff for every sequence 

(an: n E w) of integers there exist crn E a~2 such that X C_ Un[an]. We can 

equally well write here X C_ Vn [an] (split w into infinitely many infinite sets). 

The following lemma, however trivial, is the key to everything. 

LEMMA 0: Let  m >_ n + 2'~k, k , n , m  E w . There exists T C_ m2 such that  

# (T )  = 2 - k  and for any (hi, ri) E n2 X [n'm)2 (i E I )  with ai 's distinct, the sets 

T + (hi, ri} (i E I )  are measure independent. 

Proo~ Find 2 n disjoint sets uo C_ [n,m) (a E n2), each of size k. Let To = 

{r E [n"~)2: TIu~ -= 0}. Then #(To) = 2 -k. Also, if hi E n2 (i E I)  are 

distinct and ~-i E In'm)2 (i E I)  are arbitrary, then To, + Ti (i E I )  are measure 

independent. 

Let T = U~e~2{a} x To. Then #(T) = 2 -k. If now ai E n2 (i E I)  are distinct, 
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T~ E In'm)2 (i E I)  are arbitrary, and J C_ I,  then 

N r + T,) : N U + • (To + 
i E J  i E J  a E ~ 2  

= N U • (To+o, + Ti) 
i E J  aE'~2 

= U {~} • N(To+  o, + "~)- 
~ i E J  

Since for every a, (To+o, + Ti)'S are measure independent (because ai 's are dis- 

tinct), it follows that (T + (a~, Ti))'S are measure independent. I 

Now comes the basic lemma. 

LEMMA 1: For every comeager set H C_ ~2 there is a dosed null set F C ~2 such 

that for every X C_ ~2 with F + X null there is t E ~2 with t + X C_ H. 

Proofi Fix a comeager set H C_ ~2. Choose integers 

ao  = O, 

0 1 n '2~n b n ,  
a n  = a n ~ a n ~ . . .  ~ a n = 

a n + l  = b n  + 2 b ~ - a ~ ,  

and sequences 

such that  

i ~ i " on. Jan,4  +1) -~ 2, 

C_s}CH. {s E ~2: 3~176 3i a n 

i (If H _~ An Hn, Hn open dense, choose an so that [a/] C_ nm_<~ Hm.) 

Find Fn C_ [ . . . . .  +1)2 with #(Fn) = 1/2 such that,  whenever a~ E [ . . . . .  +1)2 

(i E I)  have distinct restrictions to [an, b~), then (Fn + a~)'s are measure inde- 

pendent. Let F = nn[Fn]. Then F is closed and null. Suppose that  F + X is 

null. 

C L A I M :  There exist Kn C [a~,b~)2 (n E w) with [Kn[ ~_ n .  2 a~ such that 

Vx E X 3~176 xi[an, bn) E Kn. 

Proof." Let G _C ~2 be an open set covering < ~ 2 + F + X  such that #(G) < 1-In en, 

where en = 1 - 2 -(n+l). Let 

Kn ={al[an, bn): a e [""'""+~)2 & 3 T E ""2 f .  + a  C L~}, 
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where 

We have 

L~ = {a �9 [~"'~+')2: #(G=uo) > #(G, ) /e~} .  

IKnl _< n .  2 ~ 

Indeed, fix r �9 a~2. By the Fubini theorem applied to G~ C_ [ . . . . .  +1)2 x [a~+~,~)2, 

#(L~) < e~. Let ak E [ . . . . .  +1)2 (k < k~) be such that  F n + a k  C L~ and all 

akl[an, b~) are distinct. Then 

M [ . . . . .  +')2 \ ( F n  + a k )  D [ . . . . .  +')2 \ Lr.  
k 

So, using independence, 

2 -k" = (1 - 1/2) k" 

>_ 1 - # ( L , )  

> 1 -  en = 2 -(n+l) ,  

hence k~ < n. The estimation for IK~[ follows. 

We shall now show that  Vx �9 X 3~176 xl[a,~,bn ) �9 K,~. Fix x �9 X.  I t  is enough 

to show 

3~176 3T �9 a~2 Fn + x[[an,an+l) C__ Lr. 

Suppose this is not true. Then 

V~176 VT �9 ~'2 F~ + xl[a~,an+l ) ~= L, .  

So there is m such that  

Vn >_ m Vv �9 ~ 2  Ba �9 Fn + xl[an,a~+l) /~(G,u~) _ p(a~) / e , .  

Note also that  for every n and T �9 a '2 ,  by the Fubini theorem applied to 

G~ C [a~,~+1)2 x [a'+l'w)2, 

?~. �9 [o,,,",,+')2 ~.(a.o~) < , ( a . )  < ,(a.)/~... 

Now we can inductively define t E ~2 such that  

Vn >_ ~ ,  tl[,~,,,a,,+i) e & +xl[a,,,a,,+~) 
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and 

Yn en#(Gt l~ . l )  <_ P(Gtla~). 

Then t E <~2 + F + x, so t E G. Since G is open, there is n with # (Gt l~+l )  = 1. 

Then 

= ___  (Gtloo) = 

which contradicts #(G) < 1-In en. I (Claim) 

We shall now show how to get t with t + X C_ H.  Let K n  = {7n/: i < n .  2 ~ }. 

[[ n, a~+l) �9 By the claim, given x E X,  Let t E ~2 be any extension of Un,i a ~ + v ~  a i 

3 ~ n 3 i x D  ~ ~ a~+l). _ T i ~ I [ a  n ,  So, 

i i i i + 1  i i " i 3 ~ n  3i t + x D_an + Tnl[an, an ) +  Tn[[an,a~n+l)=an. 

It  follows that  t + x E H.  I 

The following two lemmas are folklore. 

LEMMA 2: I f  for every open dense set H C_ ~2 there exists t E ~2 with t + X  C_ H, 

then X is strongly null. 

Proof" Fix an increasing sequence of integers (an: n E w). Choose ~-~ E ~ 2  so 

that  H = Un[Tn] is dense. Let t E ~2 be such that  X C H + t .  Then the sequence 

I-m + t[a~: n E w> witnesses for (an: n E w) that  X is strongly null. I 

LEMMA 3: Suppose that X C_ ~2 is strongly null and F C_ ~2 is dosed null. Then 

F + X is null. 

Proof" Fix an increasing sequence of integers (an: n E w/ and sets Fn C 

[ . . . . .  +~)2 of measure _< 2 -n  so that  F C_ ~[Fn]. Since X is strongly null, there 

exist Tn E [ . . . . .  +~)2 such that  X C Vn[Tn]. Now, 

F + x c_ V[F,~ + Tn]. 
n 

Since #(F~ + rn) _< 2 -~ ,  it follows that  F + X is null. I 

Proof of  Theorem: Suppose that  F + X  is null for all closed null F C_ ~2. Then, 

by Lemma 1, X can be translated into any comeager set. So, by Lemma 2, X is 

strongly null. The other direction follows by Lemma 3. I 

Note that  we have also proved the Galvin-Mycielski-Solovay theorem. 
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The nontrivial implication in our theorem can be rephrased as follows. If F +  X 

is null for all closed null F C_ R, then F + X ~t R for all meager F C_ R. This is 

a distant analogue of the following theorem of Shelah [Sh]. 

THEOREM (Shelah): I f  F + X is null for ali null F C_C_ It, then F + X is meager 

for a11 meager F C_ R. 

We shall now modify Lemma 1 so that it would yield Shelah's theorem. First 

let us record the following elementary lemma. 

LEMMA 4: Let A,~ C_ w (n E w) be finite and pairwise disjoint. Let rn = A,~ x {0} 

and let Tn C_ A. 2 (n E w) be nonempty. Then 

(a) V,~[r,] and Vn[T,] are comeager; 

(b) V.[T.I  = A.[T,~] + V.[r,~] = Vn[Tn] + hn[Tn]; 

(c) i fY C_ ~2 is such that Y + V.[T.] # ~2, then Y + A.[T.] is meager. 

Proof." (a) and (b) are clear. For (c), note that  if t r Y + Wn[Tn], then t 

Y+A~[T~]+V~[T,].  It follows that t+V,~[r,] is disjoint with Y +  A,,[T,]. I 

PROPOSITION 1: For every meager set D C_ ̀ 02 there exist an increasing sequence 

(a~: n E w> E `0w and sets Fn,Tn C_ [a"'a"+l)2 of measure <_ 2 -~ (so Vn[Fn], 

Vn[Tn] are null, and An[F,,], A.[T.] are null F . )  such that D + Vn[T,~] ~ '~ 

D + A,,[T,,] is meager, and 

(&) every X C_ "2 for which A~[F~] + X is null can be translated into Vn[Tn] 

(thus, if A~[F~] + X is null then D + X ~ ~2); 

(6)  every X C_ ~2 for which V,[Fn] + X is null can be translated into A,~[Tn] 

(thus, if  Wn [F~] + X is null then D + X is meager). 

Proo~ Fix a meager set D C_ ~2. Let cn E w be large enough with respect to n 

(e.g, cn = 22n+1). Choose integers 

ao =- O, 

0 1 c ~ ' 2 ~  = b n ,  
a n  = a n < a n < " "  < a n  

a n + l  = bn  -I- 2 b ' - a "  . n ,  

and sequences 

such that 

~ o  ~ " [.., 4 2, 

c_ s} c_ ~ 2 \ D .  {s E ~2: 3 ~ n  3i a,~ 
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Make sure that  

where dn �9 w are such that 

Define now 

Then 

STRONG MEASURE ZERO SETS 

a~+l _ ani > dn, 

2 -d= " an �9 2 ~ < 2 - ~ .  

Tn = {~" �9 [~='~+1)2: 3i T[[a~,a~ +l) =-- 0}. 

#(Tn) < 2 -d~ . c~ .  2 ~ < 2 -~.  

177 

We have 

where 

L~ = {a �9 [ . . . . .  +1)2: #(Grua)  > #(Gr)/r 

IKnI <_ c~ . 2 '~. 

Indeed, fix T �9 a=2. By the Fubini theorem applied to G~ C_ [a~,a=+~)2 • [a=+l,w)2, 

#(L~) < en. Let ak �9 [a='a=+l)2 (k < kr) be such that Fn + ak C_ L~ and all 

akl[an, bn) are distinct. Then 

N [a='a=+l)2 \ ( F n  + ak) D [a='a=*l)2 \ Lr. 
k 

Also it is not hard to see that if s E ~2 is such that Ui,~ a~ _c s, then 

s + V[Tn] c_ ~2 \ D. 
n 

It follows that D + Vn[Tn] # ~2, hence, by Lemma 4, D + AnITa] is meager. 

Now choose sets Fn C [ . . . . .  +1)2 (n E w) so that  #(Fn) = 2 -'~ and whenever 

a~ E [a . . . .  +1)2 (i E I) have distinct restrictions to [an, bn) then (Fn + ai) 's are 

measure independent. 

(&) Suppose that An [Fn] + X is null. 

CLAIM: There exist Kn C_ [a~,b~)2 (n E w) with IKn] < ca" 2 ~ such that 

V X E X 3Cr xi[an, bn) �9 Ks .  

Proof" Let G C_ ~2 be an open set covering An[F~] + X  such that #(G) < 1-In en 

(as in Lemma 1, en = 1 - 2-(~+1)). Let 

Kn = {al[a,~,bn): a �9 [a~'a'~+l)2 ~: ~ T �9 a~2 Fn -~-(r C L~}, 
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So, by independence,  

(1 - 2 -n )  k'- __ 1 - It(L,-) > 1 - cn = 2 - ( n + l ) ,  

hence k ,  _< c~. The  es t imat ion  for [K~ I follows. 

The  rest of the proof  of the claim is as in L e m m a  1. m (Claim) 

Let now K~ = {T~: i < Cn �9 2a~}. By the claim, for any t E ~2 such tha t  

Tnl[a.,a ~ ) C_ t U i i i + 1  

we have 

t + x c V[Tn]. 
n 

Indeed,  if T~ c_ x E X,  then (t + x) a i I[ . , a ~  +1) ~ O. 

(tb) Suppose tha t  V , [ F , ]  + X is null. 

CLAIM: 

m (.l) 

There  exist Kn c_ [a=,b*)2 (n E cO) with [Kn I _< c~ �9 2 a~ such that 

Vx E X V~176 x[[a,~,bn) E K , .  

Proo~ Let G be an open set covering Vn[Fn] + X such tha t  It(G) < 1 and for 

every 7 E <~2 with [T] ~ G we have It([T] \ G) > 0. For such r let 

g~,~ = {al[a. ,b~): a e [ . . . . .  +1)2 & [Fn + a] n ([r] \ G )  -- 0}. 

We have 

I g . , .  I �9 2 - "  < oo .  
n 

(k that Indeed, let kn = [K~,,I and choose a n E < so 

are dist inct  and give all Kr,n. Then  

0 ~ 2  \[F,~ + a~] _D [71 \ G. 
n , k  

So, by independence,  

I t  follows tha t  

H ( 1  - 2 - n )  k~ > 0. 
n 

E k n . 2  -~  < o o .  
n 
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For each 7- as above choose now n~ E w so tha t  

E E IK~,nl2-"< oo. 
T n > ' ` r  

Let  

Kn  = U { K . , ' ` :  T is such t ha t  n .  _< n}. 

Then  E n  [ K n l  " 2- - ' `  < CO, S O  

V~176 ]K'`I<_2"<_c,,.2 a-. 

We shall,  w i thou t  loss of general i ty,  d rop  oo in this  es t imat ion .  

F ix  now x E X .  We shall  show tha t  

VC~ xl[an, bn ) E Kn. 

We have 

179 

we have 

t + x c A[Tq. . ( , )  
n 

( V [ F q  + ~) n (~2 -. c )  = o. 
n 

By Bai re ' s  ca tegory  theo rem appl ied  to  ~2 \ G, there  is m 6 w and  T 6 <~2 wi th  

[~] n (~2 \ c )  # 0 such that 

( U [F,~ +zl[a'`,a'`+,)]) n ([~l " -a )  = O. 
n > m  

Then for n _> max(n~, m) we have 

xl [a . ,~ , )  �9 Kn. . (Claim) 

Let  now Kn -- {7~: i < C n " 2a~}. By the  claim, for any t G ~2 such t ha t  

i i [.J ~b[a., a~+ 1) c t 
r t , i  
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Bartoszyfiski (personal communication) noted that Shelah's [Sh] proof gives a 

null set G C ~2 such that any X C_ ~2 for which G + X is null can be translated 

into G. Since the set G was in a natural way obtained as a union of two null sets, 

it seemed improbable that G itself could be small, where small is taken in the 

sense of Bartoszyfiski [B]. (A set G C ~2 is small if there is a partition of w into 

finite sets As (n E w) and there exist S~ C_ A~2 (n E w) such that G C_ V~[S~] 

and ~,~/~(Sn) < or Bartoszyfiski [B] showed that every null set is a union of 

two small sets and that there exist null sets that are not small.) 

Using Proposition 1 we can find a set G which is small and has the above 

properties. 

COROLLARY: There exists a small set G c_C_ ~2 such that any X C_ ~2 for which 

G + X is null can be translated into G. 

Proof: In the notation of Proposition i take D = 0 and let G = A,~ [Fn] U V,~ [Tn] 

(or, G = V~[Fn] u A~[T~]). Then G is small. Indeed, let An = [as, an+l) and 

S,~ = F,~ U T,~ (n E w). Then G C_ Vn[Sn] and Vn #(S,~) <_ 2 -~+1. Now, if G + X 

is null, then A,~[F~] + X (resp. V~[Fn] + X) is null, so, by (&) (resp. (tb)), X 

can be translated into V,~[T~] C_ G (resp. An[Tn] C_ G). I 

Recently Andryszczak and Rectaw fAR] strengthened the (a) ~ (b) implication 

of the Galvin-Mycielski-Solovay characterization to: if X C_C_ R is strongly null 

then for every G~ set G C_ R x R all of whose vertical sections Gs (s E R) are 

dense, N=ex G~ r 0. (This was also known to Galvin.) 

The following proposition shows how the Andryszczak-Rectaw result can be 

obtained from the Galvin-Mycielski-Solovay characterization. 

PROPOSITION 2: Let G C_ ~2 • ~2 be a G~ (resp. open) set with all vertical 

sections G8 (s E ~2) dense. Then there is a dense G~ (resp. open) set H C_ ~2 

and a continuous function f: ~2 --* ~2 such that Vs f [H + s] C_ Gs. In particular, 

if  X C_ ~2 and t E ~2 are such that t + X C_ H, then S(t) E n ~ e x  G~. 

Proo~ We do it for G~. Find increasing (an: n E o;), (b~: n E ~) E ~w, a0 = 0, 

and r E [ . . . . .  +1)2 (T E b"2) such that 

N U U x c. 
rrt n>rn,rEbr~ 2 

Next choose r~ E b, 2 (n E w) so that 

U 
m n > m  
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is dense and define f by 

f ( t )  = U r  + tlb,~). 
n 

The function f is clearly continuous. We shall prove that f [H  + s] C Gs. To see 

this  let t ~ [Tn] + S. T h e n  s E [~-n] + t = [T,~ + tlb,~] a n d  f ( t )  E [r + tlbn)]. So, 

if 3 ~ n  t E [Tn] + S, then 

3~ 37 E b~2 ( s , f ( t ) )  E [T] x [r 

implying (s, f ( t ) )  E G. I 

Notes: (0) Lemma 2 is just the easy (c) :~ (a) implication of the Galvin- 

Mycielski-Solovay theorem. A combination of Lemmas 1 and 3 gives the hard 

implication (a) =~ (b). A direct proof might be as follows. Given a comeager set 

H, find an increasing sequence (a,:  n E w) E ~w and sequences (rn E [a . . . .  +1) 2 

(n E w) such that V,~[a,~] C H. If X is strongly null, there exist rn E [a"'~+1)2 

(n E w) such that X C_ Vn[~-n]. Let t = Un as + Tn. Then 

t + X C V[cr,, + as + T,] = V[1"~] C g .  
n n 

(1) Note that f in Proposition 2 can be chosen to be one-to-one (choose r to be 

one-to-one). Also, the proposition can be reformulated as follows. If G C_ ~2 • ~2 

is a G~ (resp. open) set with all vertical sections Gs (s E ~2) dense, then there 

is a dense G~ (resp. open) set H C_ ~2 and a continuous function f :  "~2 ~ "~2 

such that Vt H + t C_ G $(t) (the upper-script means horizontal section). Indeed, 

instead of Vs f [H  + s] C Gs, as in the proposition, we can write f*[H*] C_ G, 

where H* = Us~2{s} x ( H + s )  and f*: ~2 x ~2 --* ~2 x ~2, f*((s, t)) = (s, f ( t ) ) .  

Then Vt (H*) t c GI(t) & (H*) t = H + t. 

The proposition remains true for R / Z  (in fact, any compact Polish group). 

For R (in general, locally compact) it is true if we drop the 'open' part. To see 

that we have to do this: Let G C R x R be an open set with all vertical sections 

G~ (s E R) dense and such that Vt E R Vn E w G t M [n, c~) contains no interval of 

size 2 -'~ (e.g., a = {(s, t): Vn E w (s E [n, n + 1] =~ Vk E Z t r s + k. 2-'~-1)}). 

Then, if H M [0, oc) contains an interval of size 2 -n,  then (H + n) M [n, ~ )  can't 

be covered by any G t. 

(2) Using the Andryszczak-Rectaw result it is not hard to see that the set 

R ". ( D + X )  in the Galvin-Mycielski-Solovay characterization is fairly thick. E.g., 
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if X is strongly null, G an uncountable G~ and D such that  GA(D+x) is meager in 

G for all x E It ,  then G ".(D+X) contains a nonempty perfect set (see [P]). Note, 

however, that we can't  claim that D + X is meager. The continuum hypothesis 

implies that there exists a nonmeager strongly null set (such is a Lusin set, 

see [Mi]). 

(3) It is not hard to strenghten the ~ implication of our theorem to: if 

X c_ R is strongly null then for every closed F c_ I t  • R with all vertical sections 

F8 (s e R)  null, U~ex Fx is null (see [P]). 

A nonmeager strongly null set X shows again that in the =v implication of our 

theorem we can't  require that  F + X is covetable by a null Fo set (null Fo sets 

are meager). It also shows that we can't drop the requirement that F is closed. 

(By a theorem of Steinhaus, if A is nonmeager and B comeager then A + B -- I t ,  

so, if X is nonmeager strongly null and F is comeager null, then F + X = R.) 

(4) Galvin [G] shows that  if X C_ R is such that for any dense G~ set G q I t  

there exist a r 0 and b with a �9 X + b c G, then X is strongly null. Passing to 

the complement of G we get that if X c_C_ I t  is such that for any meager D C R 

there exists a r 0 with D + a .  X r It ,  then X is strongly null. 

The r implication of our theorem can be strengthened in a similar way. 

Namely, if X C I t  is such that  for any closed null set F C R there exists 

a r 0 with F + a �9 X null, then X is strongly null. Indeed, by Lemma 1, if for 

every closed null set F C_ R there is a with F + a .  X null, then for every meager 

set D C _ R t h e r e i s a w i t h D + a .  X C R .  

(5) Recall that  a set X C_ R is strongly meager iff for every null set G C R,  

G + X r R (see [Mi]). One may think about the following dual theorem: a set 

X C I t  is strongly meager iff for every closed null set F C_ R, F + X is meager. 

The =~ implication is an old unpublished result of Rectaw. A short proof 

might be as follows. Let F,  an's and Fn's be as in the proof of Lemma 3. Then 

Vn[F,] is null and F C_ An[Fn]. Since X is strongly meager, Vn[F,]  + X # ~2. 

By Lemma 4, A , [F , ]  + X is meager. 

The r implication is false: Suppose that  in V the union of any R1 meager sets 

is meager. Let c be a Cohen real over V. Then in V[c] we have: (&) there is a 

null set G such that for every uncountable X C_ I t v ,  G + X = I t  ([Ca]); (tb) the 

union of any ~1 meager sets is meager. So, in Y[c] ([CP]), if Z C_ I t v  has size 

l~l, then X is not strongly meager (by (&)) and F + X is meager for all meager 

F (by ($)) .  
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Another  a t t empt  at  a dual theorem can be: a set X C_ R is s trongly meager 

iff for every nowheredense set F C_ R,  F + X is meager. This is false in bo th  

directions. For ~ we argue as before. For ~ , if X is a nonnull s t rongly meager 

set (e.g., a Sierpifiski set, see [P]) and F is a co-null meager set, then, by a 

theorem of Steinhaus, F + X = R.  

QUESTION: Can we replace in our characterization R by ( R / Z ) ~ ?  

ACKNOWLEDGEMENT: The claim of Lemma 1 has been inspired by [BSh] and 

[Sh]. 
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