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ABSTRACT
We show that a set X C R has strong measure zero iff for every closed

measure zero set F' C R, F 4+ X has measure zero.

A set X C R is strongly null (has strong measure zero) iff for every sequence of
positive real numbers (e,: n € w) there exists a sequence (X,: n € w) of subsets
of R such that X C |J,, X,, and the diameter of X,, < €, (see [Bo], [Mi]). Galvin,
Mycielski and Solovay [GMS] characterized strongly null sets in the following way
(see [G} or [Mi] for a proof):

THEOREM (Galvin, Mycielski and Solovay): Let X C R. The following condi-
tions are equivalent:

(a) X is strongly null;

(b) every dense Gs set contains a translate of X;

(c) every open dense set contains a translate of X .

The Galvin—-Mycielski-Solovay theorem can be rephrased as follows. A set X C
R is strongly null iff D + X # R for every meager (equivalently, nowheredense)
set D. Indeed, just note that for t € R, t ¢ D + X iff (—t) + X C R~(-D).

We shall prove the following theorem.
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THEOREM: A set X C R is strongly null iff F + X is null for every closed null
set F C R.

Strongly null sets can be defined for any metric space. For technical reasons we
choose to work with the Cantor set “2 rather than R. It is not hard to transfer
our arguments to R and R/Z (and then, in fact, to any abelian locally compact
finite dimensional Polish group).

Notation: w is the set of nonnegative integers. For n € w, n = {0,1,...,n—1}.
For A C w (finite or infinite), we endow 42 with the product structure arising
from considering 2 = {0,1} as the group of addition mod 2 with the discrete
metric and measure u such that p({0}) = p({1}) = 1/2. We denote the product
measure in 42 by 14 and usually drop the subscript. We say that sets T; C 42
(i € I) are measure independent if u((;c;Ti) = [lic; #(Ti) for every finite
J C I. Note that if T;’s are independent, then so are (42 \ T;)’s

For 7 € 42, let [r] = {t € “2: 7 C t}. For T C 42, let [T] = |, ¢p[r]. Given
sets S, (n € w), we write \/,, S, for the upper limit (,, U Sy and A, Sn for
the lower limit |J,, MN,5m Sn- We also write 3%°n for Ym3n > m and V*°n for
ImVn >m. Thus, t € \[r] ff 3°n 7, Ctand t € A [r] i V°n 7, C ¢

If BC A C w, we identify 42 with B2 x A>B2, For 7 € B2 and G C 42, let
G, = {0 € A>P2: TU0 € G} (we view G, as the section of G C B2 x 4> 52
determined by 7).

Let <2 =], "2.

It is not hard to see that a set X C “2 is strongly null iff for every sequence
(an: n € w) of integers there exist 0, € ®*2 such that X C |J,[lon]. We can
equally well write here X C \/, [0,] (split w into infinitely many infinite sets).

n>m

The following lemma, however trivial, is the key to everything.

LEMMA 0: Let m > n+ 2"k, k,n,m € w . There exists T C ™2 such that
w(T) = 27% and for any {0;,7;) € "2 x "™2 (i € I) with o;’s distinct, the sets
T + {0;,7:) (i € I) are measure independent.

Proof: Find 2™ disjoint sets u, C [n,m) (6 € ™2), each of size k. Let T, =
{r € m™2: rju, = 0}. Then u(T,) = 27%. Also, if o; € "2 (s € I) are
distinct and 7; € ™2 (i € I) are arbitrary, then T,, + 7; (i € I) are measure
independent.

Let T = J,eng{0} X T,. Then pu(T) = 27*. If now o; € "2 (i € I) are distinct,
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; € [m™)2 (i € I) are arbitrary, and J C I, then

NT+oam) =) U lo+a} x(To +7)

i€J i€eJogn2
= ﬂ U {6} X (Toyo, + i)

i€Jo€E™2

= U {o} x m(T0+0’i + 7).
oE™2 ieJ
Since for every o, (T,+0, + T:)’s are measure independent (because o;’s are dis-
tinct), it follows that (T + {0, 7:))’s are measure independent. ]

Now comes the basic lemma.

LEMMA 1: For every comeager set H C “2 there is a closed null set F C “2 such
that for every X C “2 with F + X null there ist € “2 witht+ X C H.

Proof: Fix a comeager set H C “2. Choose integers

ap = 0,

.2%n
apn=ad <a} <. <a¥*" =b,,

ant+1 = b, + 2bn—an,

and sequences
oy lan, a;ft) — 2,

such that
{s€*2:3*°n 3 d}, Cs} CH.

(If H 2N, Hn, Hn open dense, choose o7, so that [0%] € N,.<, Hm-)

Find F, C [@n:a2+1)2 with u(F,) = 1/2 such that, whene;er 0; € lenant1)
(¢ € I) have distinct restrictions to [an, by ), then (F, + 0;)’s are measure inde-
pendent. Let F = (| [F,]. Then F is closed and null. Suppose that F + X is
null.

Cram: There exist K, C [%%)2 (n € w) with |K,| < n - 2% such that
Vz € X 3%n z|[an, b,) € K,.

Proof: Let G C “2 be an open set covering <“2+F+ X such that 4(G) < [], €,
where €, =1 — 2=("+1) | et

Kn = {ollan,bs):oc € lon+02 & 37 €2 F, 4+ 0 C L.},
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where
L, = {o € 12 4(Gru0) > u(Gr)/en}-

We have
|Kpn| < n-2%.

Indeed, fix 7 € *2. By the Fubini theorem applied to G, C [8n:@+1)2 x [an+1.)9,
w(L;) < €,. Let o € [an,ant1)9 (k < k;) be such that F,, + 6 C L, and all
ok|[an, br) are distinct. Then

)22 N (Fy + 0x) 2 e erI2 N L,
k

So, using independence,

27k = (1-1/2)%
2 1- M(LT)
>1—¢, = 2"+

hence k, < n. The estimation for | K| follows.
We shall now show that Vz € X 3%°n z|[an,b,) € K. Fix x € X. It is enough
to show
3%°n Ir € **2 F, + z|[an, @nt1) € L.

Suppose this is not true. Then
Ven VT € **2 F,, + z|(an, @nt1) € L.
So there is m such that
Vn>mVr €230 € F, + z|[an, ant1) #(Grus) < u(Gr)/én.

Note also that for every n and 7 € %2, by the Fubini theorem applied to
G‘r g [anvan+l)2 X [an+1:“’)2,

Jo € [aman+l)2 Il(G‘rUa) < IJ'(GT) < /J'(G‘r)/fn-
Now we can inductively define ¢ € “2 such that

Vn>m, t|[an,ant1) € Fr + zljan, ant1)
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and
v enti(Gija,,,) < (G, )-

Thent € <¥2+ F+x,s0t € G. Since G is open, there is n with MGan,,) = 1.
Then

€0 €n = €0 €nlGilany,) < 1(Griop) = 1(G),
which contradicts p(G) < [1,, €n- i (Claim)

We shall now show how to get t witht + X C H. Let K, = {ri:i<n-2%}.
Let ¢ € 2 be any extension of |, ; o7, +7.[a},, ait?). By the claim, given z € X,
3%°n 3 z D 7i|[al, att1). So,

3°n it +x Dol + 7i|[al, aitt) + 7i[a, el = ol
It follows that t +x € H. n
The following two lemmas are folklore.

LEMMA 2: If for every open dense set H C “2 there existst € “2 witht+X C H,
then X is strongly null.

Proof: Fix an increasing sequence of integers (a,: n € w). Choose 7, € %»2 so
that H = |J,,[7] is dense. Let t € “2 be such that X C H +¢. Then the sequence
(Tn + t|an: n € w) witnesses for (a,: n € w) that X is strongly null. ]

LEMMA 3: Suppose that X C “2 is strongly null and F' C “2 is closed null. Then
F + X is null.

Proof: Fix an increasing sequence of integers (a,: n € w) and sets F,, C
[an,an+1)2 of measure < 27" so that F C ([F,]. Since X is strongly null, there
exist 7, € [4»n+1)2 such that X C\/ _[r,]. Now,

F+X C\/[Fn+ml

Since p(F, + m,) < 277, it follows that F + X is null. ]

Proof of Theorem: Suppose that F + X is null for all closed null F' C “2. Then,
by Lemma 1, X can be translated into any comeager set. So, by Lemma 2, X is
strongly null. The other direction follows by Lemma 3. ]

Note that we have also proved the Galvin-Mycielski-Solovay theorem.
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The nontrivial implication in our theorem can be rephrased as follows. If F+X
is null for all closed null F C R, then F + X # R for all meager FF C R. This is
a distant analogue of the following theorem of Shelah [Sh].

THEOREM (Shelah): If F + X is null for all null F C R, then F + X is meager
for all meager FF C R.

We shall now modify Lemma 1 so that it would yield Shelah’s theorem. First
let us record the following elementary lemma.

LEMMA 4: Let A, C w (n € w) be finite and pairwise disjoint. Let 7, = A, x {0}
and let T, C 4~2 (n € w) be nonempty. Then
(a) V,[m] and V,,[T.] are comeager;

(b) VaulTul = AulTn] + Vplm] = VolTal + Anlmli
(c) ifY C 2 issuch that Y + \/, [Tn] # “2, then Y + A, [T5] is meager.

Proof: (a) and (b) are clear. For (c), note that if t ¢ Y +\/, [Tn], then t ¢
Y + AL [Tn]+ Vo [mn). Tt follows that t+V/, [7,] is disjoint with Y + A [T]. |

PROPOSITION 1: For every meager set D C “2 there exist an increasing sequence
(an: n € W) € “w and sets F,,, T, C [@~3n+12 of measure < 27" (s0 \/,[Fn],
V,.[T»] are null, and A, [F,], A,[Tn] are null F,) such that D +\/, [T,] # “2,
D + A, [T,] is meager, and
() every X C “2 for which A\, [F.]+ X is null can be translated into \/,,[Tx]
(thus, if A\, [Fn] + X is null then D + X # “2);
(#) every X C “2 for which \/,[F,] + X is null can be translated into A, [T]
(thus, if \/,[Fn] + X is null then D + X is meager).

Proof: Fix a meager set D C “2. Let ¢, € w be large enough with respect to n
(e.g, ¢, = 22"+1). Choose integers

a0=0,
an =0l <al <. <a?" =b,,

An+1 = bn + zb"_an ' n,

and sequences
oy [an, ant') = 2,

such that
{s €“2:3%°n Jiol Cs}C¥2ND.
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Make sure that
aitt —al > d,,

where d,, € w are such that
27 0n ., .20 < 27T,

Define now
T,={r¢€ [an.0n+1)9; 3 7|[a, attt) = 0}.

n'n

Then
w(Ty) € 27% ¢, - 2% <277,

Also it is not hard to see that if s € “2 is such that | J ot C s, then

inon

s+ \/[T.] C“2~D.

It follows that D + V/, [T] # “2, hence, by Lemma 4, D + A, [T,] is meager.
Now choose sets F,, C [#n%n+1)2 (n € w) so that u(F,) = 2~™ and whenever

0; € l#nant1)2 (4 € I) have distinct restrictions to [an,by) then (F, + 0;)’s are

measure independent.

(&) Suppose that A, [F,]+ X is null.

CLAM: There exist K, C [422)2 (n € w) with |K,| < ¢, - 2* such that
Ve X 3%n z|[an, bn) € Kn.
Proof: Let G C “2 be an open set covering A, [F]+ X such that u(G) <[], €n
(as in Lemma 1, €, = 1 — 2~ (™*1), Let
K = {0|[an,bn): 0 € 0nan41)2 4 37 €92 F, 40 C L, },

where
L, = {o € B2 4(Gu0) > w(Gr)/en}-
We have
1Knl < cp -2,

Indeed, fix 7 € 2»2. By the Fubini theorem applied to G, C [ar:2n+1)2 x [@a+1.w)9
p(Ls) < €. Let of € [an,ant1)9 (k < k.) be such that F,, + 0, C L, and all
ok|lan, bn) are distinct. Then

ﬂ[an)an+l)2 N(Fn +0k) 2 [an,0ns1}g L.
k
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So, by independence,
(1-2"% 21— p(L,) > 1 - ¢, =27,

hence k, < c,. The estimation for |K,| follows.

The rest of the proof of the claim is as in Lemma 1. # (Claim)

Let now K, = {7i:i < ¢, - 2°~}. By the claim, for any ¢ € “2 such that
U wllat, L“ t

we have
t+XC \/[Tn].

n''n

Indeed, if 72 C z € X, then (¢ + z)|[a},ai) = 0. H(&)
(#) Suppose that \/, [F,] + X is null.

CLAIM: There exist K, C [*»®)2 (n e w) with |K,| < ¢, - 2°~ such that

Ve X V°n zllan,b) € Ki.

Proof: Let G be an open set covering \/, [F,] + X such that x(G) < 1 and for

every 7 € <“2 with [7] € G we have u([r] ~ G) > 0. For such 7 let
Ky p = {0|[an, by): 0 € B9 t)2 & [F, + 0] N ([7] N G) = 0}.

We have

S OIKeq| 27
n

Indeed, let k, = | K, | and choose = [an,ant1)2 (k < ky) so that a,’i|[an,
are distinct and give all K, ,. Then

(1“2 N[Fa + o8] 2 [7] N G.
n,k

So, by independence,

[[a -2 >o0.

n

an-T" < 00.

n

It follows that

bn)’s



Vol. 93, 1996 STRONG MEASURE ZERO SETS 179

For each 7 as above choose now n, € w so that

Z Z |Krnl 27" <00

T n>n,

Let
= U{KT»”: 7 is such that n, < n}.

Then 3, |Kn|-27" < o0, so
vVeon (K, <2" <e,- 2%

We shall, without loss of generality, drop co in this estimation.
Fix now = € X. We shall show that

Ven  zl{an, b) € Kn.

We have
(VIF] +2)n(“2~G) =0

n

By Baire’s category theorem applied to “2 G, there is m € w and 7 € <¥2 with
[T] N (2~ G) # 0 such that

(U [Fn + @llan, anr D)) N (7]~ G) = 0.

n>m

Then for n > max(n,,m) we have

z|[an, bn) € Ky, B (Claim)

Let now K, = {7i:4i < ¢, - 2%~ }. By the claim, for any ¢ € “2 such that

U illa, aitl) C t

we have

t+ X C A\IT] 1 (4)
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Bartoszynski (personal communication) noted that Shelah’s [Sh| proof gives a
null set G C “2 such that any X C “2 for which G + X is null can be translated
into G. Since the set G was in a natural way obtained as a union of two null sets,
it seemed improbable that G itself could be small, where small is taken in the
sense of Bartoszynski [B]. (A set G C “2 is small if there is a partition of w into
finite sets A, (n € w) and there exist S, C 4=2 (n € w) such that G C V/,,[Sh]
and Y u(S») < co. Bartoszynski [B] showed that every null set is a union of
two small sets and that there exist null sets that are not small.)

Using Proposition 1 we can find a set G which is small and has the above
properties.

COROLLARY: There exists a small set G C “2 such that any X C “2 for which
G + X is null can be translated into G.

Proof: In the notation of Proposition 1 take D = @ and let G = A, [FL]UV,,[Tx]
(or, G =V, [Fa] U A,[Tx]). Then G is small. Indeed, let A, = [an,@n41) and
S, = F,UT, (n € w). Then G CV,[S,] and Vn p(S,) < 27" Now,if G+ X
is null, then A, [Fn] + X (resp. V,[Fn] + X) is null, so, by (&) (resp. (#)), X
can be translated into \/, [T,] C G (resp. A,[T»] C G). |

Recently Andryszczak and Rectaw [AR] strengthened the (a) = (b) implication
of the Galvin—Mycielski-Solovay characterization to: if X C R is strongly null
then for every Gs set G C R x R all of whose vertical sections G, (s € R) are
dense, (,cx Gz # 0. (This was also known to Galvin.)

The following proposition shows how the Andryszczak-Rectaw result can be
obtained from the Galvin—Mycielski—Solovay characterization.

PRrROPOSITION 2: Let G C “2 x “2 be a Gs (resp. open) set with all vertical
sections G, (s € “2) dense. Then there is a dense G (resp. open) set H C “2
and a continuous function f: “2 — “2 such that Vs f[H + s] C G,. In particular,
if X C“2 andt € “2 are such that t + X C H, then f(t) € (,cx G=-
Proof: We do it for Gs. Find increasing {(a,: n € w), {by: n € w) € “w, ag =0,
and ¢(7) € 18n2n+1)2 (7 € »2) such that

AU U rxmice

m n>mrgbn2

Next choose 7, € ®2 (n € w) so that

H={ Ul

m n>m
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is dense and define f by

The function f is clearly continuous. We shall prove that f[H + s] C G,. To see
this let ¢ € [r,] + s. Then s € [1,] + ¢ = [1, + t|b,] and f(t) € [@(7n + t|bn)]. So,
if 3°n t € [m,]) + s, then

3%n 37 € 2 (s, f(t)) € [1] x [¢(7)],

implying (s, f(t)) € G. |

Notes: (0) Lemma 2 is just the easy (c) = (a) implication of the Galvin—
Mycielski-Solovay theorem. A combination of Lemmas 1 and 3 gives the hard
implication (a) = (b). A direct proof might be as follows. Given a comeager set
H, find an increasing sequence (a,: n € w) € “w and sequences g, € [3n~+1)2
(n € w) such that \/,[o,] C H. If X is strongly null, there exist 7,, € [3»:8n+1)2
(n € w) such that X C \/, [mn]. Let t =, 0w + 7. Then

t+X C\/lon+0n+m] = \/[m] € H.

(1) Note that f in Proposition 2 can be chosen to be one-to-one (choose ¢ to be
one-to-one). Also, the proposition can be reformulated as follows. If G C “2x“2
is a G4 (resp. open) set with all vertical sections G (s € “2) dense, then there
is a dense G (resp. open) set H C “2 and a continuous function f: “2 — “2
such that Vt H +t C Gf® (the upper-script means horizontal section). Indeed,
instead of Vs f[H + s] C G, as in the proposition, we can write f*[H*] C G,
where H* = {J,cuo{s} X (H+s) and f*: “2x“2 = “2x %2, f*({(s,t)) = (s, f(t)).
Then Vt (H*)* C G/ & (H*)! = H +t.

The proposition remains true for R/Z (in fact, any compact Polish group).
For R (in general, locally compact) it is true if we drop the ‘open’ part. To see
that we have to do this: Let G C R x R be an open set with all vertical sections
G; (s € R) dense and such that Vt € R Vn € w G*N[n, 0o) contains no interval of
size 27" (e.g.,, G={(s,t):Vnc€w (s€n,n+1] = VkeZt#s+k-27""1)}).
Then, if H N [0, co0) contains an interval of size 27", then (H + n) N [n, 00) can’t
be covered by any G*.

(2) Using the Andryszczak-Rectaw result it is not hard to see that the set
R ~(D+X) in the Galvin-Mycielski-Solovay characterization is fairly thick. E.g.,
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if X is strongly null, G an uncountable G5 and D such that GN(D+x) is meager in
G for all z € R, then G ~(D+X) contains a nonempty perfect set (see [P]). Note,
however, that we can’t claim that D + X is meager. The continuum hypothesis
implies that there exists a nonmeager strongly null set (such is a Lusin set,
see [Mi]).

(3) It is not hard to strenghten the = implication of our theorem to: if
X C R is strongly null then for every closed F C R x R with all vertical sections
F, (s € R) mull, |J ¢ x Fr is null (see [P]).

A nonmeager strongly null set X shows again that in the = implication of our
theorem we can’t require that F' 4+ X is coverable by a null F,, set (null F, sets
are meager). It also shows that we can’t drop the requirement that F is closed.
(By a theorem of Steinhaus, if A is nonmeager and B comeager then A+ B =R,
so, if X is nonmeager strongly null and F is comeager null, then F'+ X = R.)

(4) Galvin [G] shows that if X C R is such that for any dense Gs set G C R
there exist a # 0 and b with a - X + b C G, then X is strongly null. Passing to
the complement of G we get that if X C R is such that for any meager D C R
there exists a # 0 with D 4+ ¢ - X # R, then X is strongly null.

The <« implication of our theorem can be strengthened in a similar way.
Namely, if X C R is such that for any closed null set F C R there exists
a # 0 with F' + a - X null, then X is strongly null. Indeed, by Lemma 1, if for
every closed null set F' C R there is a with F' 4 @ - X null, then for every meager
set D C R thereisa with D+a-X #R.

(5) Recall that a set X C R is strongly meager iff for every null set G C R,
G + X # R (see [Mi]). One may think about the following dual theorem: a set
X C R is strongly meager iff for every closed null set F C R, F' + X is meager.

The = implication is an old unpublished result of Reclaw. A short proof
might be as follows. Let F, a,’s and F,,’s be as in the proof of Lemma 3. Then
V., [Fn] is null and F C A, [Fn]. Since X is strongly meager, \/ [Fn] + X # “2.
By Lemma 4, A, {F.] + X is meager.

The <« implication is false: Suppose that in V the union of any X; meager sets
is meager. Let ¢ be a Cohen real over V. Then in V[c|] we have: (&) there is a
null set G such that for every uncountable X CRY, G+ X = R ([Ca]); (#) the
union of any ®; meager sets is meager. So, in V¢ ([CP]), if X C RY has size
®;, then X is not strongly meager (by (&)) and F + X is meager for all meager
F (by ().
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Another attempt at a dual theorem can be: a set X C R is strongly meager
iff for every nowheredense set ' C R, F + X is meager. This is false in both
directions. For < we argue as before. For = , if X is a nonnull strongly meager
set (e.g., a Sierpinski set, see [P]) and F is a co-null meager set, then, by a
theorem of Steinhaus, FF + X = R.

QUESTION: Can we replace in our characterization R by (R/Z)*?

ACKNOWLEDGEMENT: The claim of Lemma 1 has been inspired by [BSh] and
[Sh].
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